亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently there is a growing focus on graph data, and multi-view graph clustering has become a popular area of research interest. Most of the existing methods are only applicable to homophilous graphs, yet the extensive real-world graph data can hardly fulfill the homophily assumption, where the connected nodes tend to belong to the same class. Several studies have pointed out that the poor performance on heterophilous graphs is actually due to the fact that conventional graph neural networks (GNNs), which are essentially low-pass filters, discard information other than the low-frequency information on the graph. Nevertheless, on certain graphs, particularly heterophilous ones, neglecting high-frequency information and focusing solely on low-frequency information impedes the learning of node representations. To break this limitation, our motivation is to perform graph filtering that is closely related to the homophily degree of the given graph, with the aim of fully leveraging both low-frequency and high-frequency signals to learn distinguishable node embedding. In this work, we propose Adaptive Hybrid Graph Filter for Multi-View Graph Clustering (AHGFC). Specifically, a graph joint process and graph joint aggregation matrix are first designed by using the intrinsic node features and adjacency relationship, which makes the low and high-frequency signals on the graph more distinguishable. Then we design an adaptive hybrid graph filter that is related to the homophily degree, which learns the node embedding based on the graph joint aggregation matrix. After that, the node embedding of each view is weighted and fused into a consensus embedding for the downstream task. Experimental results show that our proposed model performs well on six datasets containing homophilous and heterophilous graphs.

相關內容

Explainability is crucial for complex systems like pervasive smart environments, as they collect and analyze data from various sensors, follow multiple rules, and control different devices resulting in behavior that is not trivial and, thus, should be explained to the users. The current approaches, however, offer flat, static, and algorithm-focused explanations. User-centric explanations, on the other hand, consider the recipient and context, providing personalized and context-aware explanations. To address this gap, we propose an approach to incorporate user-centric explanations into smart environments. We introduce a conceptual model and a reference architecture for characterizing and generating such explanations. Our work is the first technical solution for generating context-aware and granular explanations in smart environments. Our architecture implementation demonstrates the feasibility of our approach through various scenarios.

Achieving a universally high accuracy in object detection is quite challenging, and the mainstream focus in the industry currently lies on detecting specific classes of objects. However, deploying one or multiple object detection networks requires a certain amount of GPU memory for training and storage capacity for inference. This presents challenges in terms of how to effectively coordinate multiple object detection tasks under resource-constrained conditions. This paper introduces a lightweight fine-tuning strategy called Calibration side tuning, which integrates aspects of adapter tuning and side tuning to adapt the successful techniques employed in transformers for use with ResNet. The Calibration side tuning architecture that incorporates maximal transition calibration, utilizing a small number of additional parameters to enhance network performance while maintaining a smooth training process. Furthermore, this paper has conducted an analysis on multiple fine-tuning strategies and have implemented their application within ResNet, thereby expanding the research on fine-tuning strategies for object detection networks. Besides, this paper carried out extensive experiments using five benchmark datasets. The experimental results demonstrated that this method outperforms other compared state-of-the-art techniques, and a better balance between the complexity and performance of the finetune schemes is achieved.

Deep learning models are increasingly data-hungry, requiring significant resources to collect and compile the datasets needed to train them, with Earth Observation (EO) models being no exception. However, the landscape of datasets in EO is relatively atomised, with interoperability made difficult by diverse formats and data structures. If ever larger datasets are to be built, and duplication of effort minimised, then a shared framework that allows users to combine and access multiple datasets is needed. Here, Major TOM (Terrestrial Observation Metaset) is proposed as this extensible framework. Primarily, it consists of a geographical indexing system based on a set of grid points and a metadata structure that allows multiple datasets with different sources to be merged. Besides the specification of Major TOM as a framework, this work also presents a large, open-access dataset, MajorTOM-Core, which covers the vast majority of the Earth's land surface. This dataset provides the community with both an immediately useful resource, as well as acting as a template for future additions to the Major TOM ecosystem. Access: //huggingface.co/Major-TOM

Malaria is a major health issue worldwide, and its diagnosis requires scalable solutions that can work effectively with low-cost microscopes (LCM). Deep learning-based methods have shown success in computer-aided diagnosis from microscopic images. However, these methods need annotated images that show cells affected by malaria parasites and their life stages. Annotating images from LCM significantly increases the burden on medical experts compared to annotating images from high-cost microscopes (HCM). For this reason, a practical solution would be trained on HCM images which should generalize well on LCM images during testing. While earlier methods adopted a multi-stage learning process, they did not offer an end-to-end approach. In this work, we present an end-to-end learning framework, named CodaMal (Contrastive Domain Adpation for Malaria). In order to bridge the gap between HCM (training) and LCM (testing), we propose a domain adaptive contrastive loss. It reduces the domain shift by promoting similarity between the representations of HCM and its corresponding LCM image, without imposing an additional annotation burden. In addition, the training objective includes object detection objectives with carefully designed augmentations, ensuring the accurate detection of malaria parasites. On the publicly available large-scale M5-dataset, our proposed method shows a significant improvement of 16% over the state-of-the-art methods in terms of the mean average precision metric (mAP), provides 21x speed up during inference, and requires only half learnable parameters than the prior methods. Our code is publicly available.

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.

Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

北京阿比特科技有限公司