亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The growing demand for personalized decision-making has led to a surge of interest in estimating the Conditional Average Treatment Effect (CATE). Various types of CATE estimators have been developed with advancements in machine learning and causal inference. However, selecting the desirable CATE estimator through a conventional model validation procedure remains impractical due to the absence of counterfactual outcomes in observational data. Existing approaches for CATE estimator selection, such as plug-in and pseudo-outcome metrics, face two challenges. First, they must determine the metric form and the underlying machine learning models for fitting nuisance parameters (e.g., outcome function, propensity function, and plug-in learner). Second, they lack a specific focus on selecting a robust CATE estimator. To address these challenges, this paper introduces a Distributionally Robust Metric (DRM) for CATE estimator selection. The proposed DRM is nuisance-free, eliminating the need to fit models for nuisance parameters, and it effectively prioritizes the selection of a distributionally robust CATE estimator. The experimental results validate the effectiveness of the DRM method in selecting CATE estimators that are robust to the distribution shift incurred by covariate shift and hidden confounders.

相關內容

Active imaging systems sample the Transient Light Transport Matrix (TLTM) for a scene by sequentially illuminating various positions in this scene using a controllable light source, and then measuring the resulting spatiotemporal light transport with time of flight (ToF) sensors. Time-resolved Non-line-of-sight (NLOS) imaging employs an active imaging system that measures part of the TLTM of an intermediary relay surface, and uses the indirect reflections of light encoded within this TLTM to "see around corners". Such imaging systems have applications in diverse areas such as disaster response, remote surveillance, and autonomous navigation. While existing NLOS imaging systems usually measure a subset of the full TLTM, development of customized gated Single Photon Avalanche Diode (SPAD) arrays \cite{riccardo_fast-gated_2022} has made it feasible to probe the full measurement space. In this work, we demonstrate that the full TLTM on the relay surface can be processed with efficient algorithms to computationally focus and detect our illumination in different parts of the hidden scene, turning the relay surface into a second-order active imaging system. These algorithms allow us to iterate on the measured, first-order TLTM, and extract a \textbf{second order TLTM for surfaces in the hidden scene}. We showcase three applications of TLTMs in NLOS imaging: (1) Scene Relighting with novel illumination, (2) Separation of direct and indirect components of light transport in the hidden scene, and (3) Dual Photography. Additionally, we empirically demonstrate that SPAD arrays enable parallel acquisition of photons, effectively mitigating long acquisition times.

In recent years, the integration of federated learning (FL) and recommendation systems (RS), known as Federated Recommendation Systems (FRS), has attracted attention for preserving user privacy by keeping private data on client devices. However, FRS faces inherent limitations such as data heterogeneity and scarcity, due to the privacy requirements of FL and the typical data sparsity issues of RSs. Models like ChatGPT are empowered by the concept of transfer learning and self-supervised learning, so they can be easily applied to the downstream tasks after fine-tuning or prompting. These models, so-called Foundation Models (FM), fouce on understanding the human's intent and perform following their designed roles in the specific tasks, which are widely recognized for producing high-quality content in the image and language domains. Thus, the achievements of FMs inspire the design of FRS and suggest a promising research direction: integrating foundation models to address the above limitations. In this study, we conduct a comprehensive review of FRSs with FMs. Specifically, we: 1) summarise the common approaches of current FRSs and FMs; 2) review the challenges posed by FRSs and FMs; 3) discuss potential future research directions; and 4) introduce some common benchmarks and evaluation metrics in the FRS field. We hope that this position paper provides the necessary background and guidance to explore this interesting and emerging topic.

Large Language Models have been shown to fail to create executable and verifiable plans in grounded environments. An emerging line of work shows success in using LLM as a formalizer to generate a formal representation (e.g., PDDL) of the planning domain, which can be deterministically solved to find a plan. We systematically evaluate this methodology while bridging some major gaps. While previous work only generates a partial PDDL representation given templated and thus unrealistic environment descriptions, we generate the complete representation given descriptions of various naturalness levels. Among an array of observations critical to improve LLMs' formal planning ability, we note that large enough models can effectively formalize descriptions as PDDL, outperforming those directly generating plans, while being robust to lexical perturbation. As the descriptions become more natural-sounding, we observe a decrease in performance and provide detailed error analysis.

This work examines the Conditional Approval Framework for elections involving multiple interdependent issues, specifically focusing on the Conditional Minisum Approval Voting Rule. We first conduct a detailed analysis of the computational complexity of this rule, demonstrating that no approach can significantly outperform the brute-force algorithm under common computational complexity assumptions and various natural input restrictions. In response, we propose two practical restrictions (the first in the literature) that make the problem computationally tractable and show that these restrictions are essentially tight. Overall, this work provides a clear picture of the tractability landscape of the problem, contributing to a comprehensive understanding of the complications introduced by conditional ballots and indicating that conditional approval voting can be applied in practice, albeit under specific conditions.

Retrieval-Augmented Generation (RAG) systems have demonstrated remarkable potential as question answering systems in the K-12 Education domain, where knowledge is typically queried within the restricted scope of authoritative textbooks. However, the discrepancy between textbooks and the parametric knowledge in Large Language Models (LLMs) could undermine the effectiveness of RAG systems. To systematically investigate the robustness of RAG systems under such knowledge discrepancies, we present EduKDQA, a question answering dataset that simulates knowledge discrepancies in real applications by applying hypothetical knowledge updates in answers and source documents. EduKDQA includes 3,005 questions covering five subjects, under a comprehensive question typology from the perspective of context utilization and knowledge integration. We conducted extensive experiments on retrieval and question answering performance. We find that most RAG systems suffer from a substantial performance drop in question answering with knowledge discrepancies, while questions that require integration of contextual knowledge and parametric knowledge pose a challenge to LLMs.

Automatic syllable stress detection is a crucial component in Computer-Assisted Language Learning (CALL) systems for language learners. Current stress detection models are typically trained on clean speech, which may not be robust in real-world scenarios where background noise is prevalent. To address this, speech enhancement (SE) models, designed to enhance speech by removing noise, might be employed, but their impact on preserving syllable stress patterns is not well studied. This study examines how different SE models, representing discriminative and generative modeling approaches, affect syllable stress detection under noisy conditions. We assess these models by applying them to speech data with varying signal-to-noise ratios (SNRs) from 0 to 20 dB, and evaluating their effectiveness in maintaining stress patterns. Additionally, we explore different feature sets to determine which ones are most effective for capturing stress patterns amidst noise. To further understand the impact of SE models, a human-based perceptual study is conducted to compare the perceived stress patterns in SE-enhanced speech with those in clean speech, providing insights into how well these models preserve syllable stress as perceived by listeners. Experiments are performed on English speech data from non-native speakers of German and Italian. And the results reveal that the stress detection performance is robust with the generative SE models when heuristic features are used. Also, the observations from the perceptual study are consistent with the stress detection outcomes under all SE models.

We propose an overview of the decentralized reconfiguration language Concerto-D through its Maude formalization. Concerto-D extends the already published Concerto language. Concerto-D improves on two different parameters compared with related work: the decentralized coordination of numerous local reconfiguration plans which avoid a single point of failure when considering unstable networks such as edge computing, or cyber-physical systems (CPS) for instance; and a mechanized formal semantics of the language with Maude which offers guarantees on the executability of the semantics. Throughout the paper, the Concerto-D language and its semantics are exemplified with a reconfiguration extracted from a real case study on a CPS. We rely on the Maude formal specification language, which is based on rewriting logic, and consequently perfectly suited for describing a concurrent model.

This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at //github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司