The past decades have witnessed an increasing interest in spiking neural networks due to their great potential of modeling time-dependent data. Many empirical algorithms and techniques have been developed. However, theoretically, it remains unknown whether and to what extent a trained spiking neural network performs well on unseen data. This work takes one step in this direction by exploiting the minimum description length principle and thus, presents an explicit generalization bound for spiking neural networks. Further, we implement the description length of SNNs through structural stability and specify the lower and upper bounds of the maximum number of stable bifurcation solutions, which convert the challenge of qualifying structural stability in SNNs into a mathematical problem with quantitative properties.
Empirical studies suggest a deep intertwining between opinion formation and decision-making processes, but these have been treated as separate problems in the study of dynamical models for social networks. In this paper, we bridge the gap in the literature by proposing a novel coevolutionary model, in which each individual selects an action from a binary set and has an opinion on which action they prefer. Actions and opinions coevolve on a two-layer network. For homogeneous parameters, undirected networks, and under reasonable assumptions on the asynchronous updating mechanics, we prove that the coevolutionary dynamics is an ordinal potential game, enabling analysis via potential game theory. Specifically, we establish global convergence to the Nash equilibria of the game, proving that actions converge in a finite number of time steps, while opinions converge asymptotically. Next, we provide sufficient conditions for the existence of, and convergence to, polarized equilibria, whereby the population splits into two communities, each selecting and supporting one of the actions. Finally, we use simulations to examine the social psychological phenomenon of pluralistic ignorance.
The Byzantine consensus problem involves $n$ processes, out of which t < n could be faulty and behave arbitrarily. Three properties characterize consensus: (1) termination, requiring correct (non-faulty) processes to eventually reach a decision, (2) agreement, preventing them from deciding different values, and (3) validity, precluding ``unreasonable'' decisions. But, what is a reasonable decision? Strong validity, a classical property, stipulates that, if all correct processes propose the same value, only that value can be decided. Weak validity, another established property, stipulates that, if all processes are correct and they propose the same value, that value must be decided. The space of possible validity properties is vast. However, their impact on consensus remains unclear. This paper addresses the question of which validity properties allow Byzantine consensus to be solvable with partial synchrony, and at what cost. First, we determine necessary and sufficient conditions for a validity property to make the consensus problem solvable; we say that such validity properties are solvable. Notably, we prove that, if n <= 3t, all solvable validity properties are trivial (there exists an always-admissible decision). Furthermore, we show that, with any non-trivial (and solvable) validity property, consensus requires Omega(t^2) messages. This extends the seminal Dolev-Reischuk bound, originally proven for strong validity, to all non-trivial validity properties. Lastly, we give a general Byzantine consensus algorithm, we call Universal, for any solvable (and non-trivial) validity property. Importantly, Universal incurs O(n^2) message complexity. Thus, together with our lower bound, Universal implies a fundamental result in partial synchrony: with t \in Omega(n), the message complexity of all (non-trivial) consensus variants is Theta(n^2).
The volume, variety, and velocity of change in vulnerabilities and exploits have made incident threat analysis challenging with human expertise and experience along. The MITRE AT&CK framework employs Tactics, Techniques, and Procedures (TTPs) to describe how and why attackers exploit vulnerabilities. However, a TTP description written by one security professional can be interpreted very differently by another, leading to confusion in cybersecurity operations or even business, policy, and legal decisions. Meanwhile, advancements in AI have led to the increasing use of Natural Language Processing (NLP) algorithms to assist the various tasks in cyber operations. With the rise of Large Language Models (LLMs), NLP tasks have significantly improved because of the LLM's semantic understanding and scalability. This leads us to question how well LLMs can interpret TTP or general cyberattack descriptions. We propose and analyze the direct use of LLMs as well as training BaseLLMs with ATT&CK descriptions to study their capability in predicting ATT&CK tactics. Our results reveal that the BaseLLMs with supervised training provide a more focused and clearer differentiation between the ATT&CK tactics (if such differentiation exists). On the other hand, LLMs offer a broader interpretation of cyberattack techniques. Despite the power of LLMs, inherent ambiguity exists within their predictions. We thus summarize the existing challenges and recommend research directions on LLMs to deal with the inherent ambiguity of TTP descriptions.
We solve a long-standing open problem about the optimal codebook structure of codes in $n$-dimensional Euclidean space that consist of $n+1$ codewords subject to a codeword energy constraint, in terms of minimizing the average decoding error probability. The conjecture states that optimal codebooks are formed by the $n+1$ vertices of a regular simplex (the $n$-dimensional generalization of a regular tetrahedron) inscribed in the unit sphere. A self-contained proof of this conjecture is provided that hinges on symmetry arguments and leverages a relaxation approach that consists in jointly optimizing the codebook and the decision regions, rather than the codeword locations alone.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.