亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adversarial examples in machine learning has emerged as a focal point of research due to their remarkable ability to deceive models with seemingly inconspicuous input perturbations, potentially resulting in severe consequences. In this study, we undertake a thorough investigation into the emergence of adversarial examples, a phenomenon that can, in principle, manifest in a wide range of machine learning models. Through our research, we unveil a new notion termed computational entanglement, with its ability to entangle distant features, display perfect correlations or anti-correlations regardless to their spatial separation, significantly contributes to the emergence of adversarial examples. We illustrate how computational entanglement aligns with relativistic effects such as time dilation and length contraction to feature pair, ultimately resulting in the convergence of their angle differences and distances towards zero, signifying perfect correlation, or towards maximum, indicating perfect anti-correlation.

相關內容

機器學(xue)(xue)(xue)(xue)(xue)習(xi)(Machine Learning)是一個研究(jiu)計(ji)算學(xue)(xue)(xue)(xue)(xue)習(xi)方(fang)(fang)(fang)(fang)法(fa)(fa)的(de)(de)(de)國際論(lun)(lun)(lun)壇。該(gai)雜志發表文(wen)(wen)章,報(bao)告廣泛的(de)(de)(de)學(xue)(xue)(xue)(xue)(xue)習(xi)方(fang)(fang)(fang)(fang)法(fa)(fa)應(ying)用(yong)于各種學(xue)(xue)(xue)(xue)(xue)習(xi)問(wen)題(ti)的(de)(de)(de)實質性(xing)結果。該(gai)雜志的(de)(de)(de)特(te)色論(lun)(lun)(lun)文(wen)(wen)描述研究(jiu)的(de)(de)(de)問(wen)題(ti)和(he)方(fang)(fang)(fang)(fang)法(fa)(fa),應(ying)用(yong)研究(jiu)和(he)研究(jiu)方(fang)(fang)(fang)(fang)法(fa)(fa)的(de)(de)(de)問(wen)題(ti)。有(you)關學(xue)(xue)(xue)(xue)(xue)習(xi)問(wen)題(ti)或方(fang)(fang)(fang)(fang)法(fa)(fa)的(de)(de)(de)論(lun)(lun)(lun)文(wen)(wen)通(tong)過實證研究(jiu)、理論(lun)(lun)(lun)分析或與心理現象的(de)(de)(de)比較提供(gong)了堅實的(de)(de)(de)支(zhi)持(chi)。應(ying)用(yong)論(lun)(lun)(lun)文(wen)(wen)展(zhan)示(shi)了如何應(ying)用(yong)學(xue)(xue)(xue)(xue)(xue)習(xi)方(fang)(fang)(fang)(fang)法(fa)(fa)來解(jie)決重要(yao)的(de)(de)(de)應(ying)用(yong)問(wen)題(ti)。研究(jiu)方(fang)(fang)(fang)(fang)法(fa)(fa)論(lun)(lun)(lun)文(wen)(wen)改進了機器學(xue)(xue)(xue)(xue)(xue)習(xi)的(de)(de)(de)研究(jiu)方(fang)(fang)(fang)(fang)法(fa)(fa)。所有(you)的(de)(de)(de)論(lun)(lun)(lun)文(wen)(wen)都以其他研究(jiu)人員可以驗證或復制(zhi)的(de)(de)(de)方(fang)(fang)(fang)(fang)式(shi)描述了支(zhi)持(chi)證據。論(lun)(lun)(lun)文(wen)(wen)還(huan)詳細說明了學(xue)(xue)(xue)(xue)(xue)習(xi)的(de)(de)(de)組成部分,并討(tao)論(lun)(lun)(lun)了關于知識(shi)表示(shi)和(he)性(xing)能任務的(de)(de)(de)假設。 官(guan)網地址:

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司