The Bayesian information criterion (BIC), defined as the observed data log likelihood minus a penalty term based on the sample size $N$, is a popular model selection criterion for factor analysis with complete data. This definition has also been suggested for incomplete data. However, the penalty term based on the `complete' sample size $N$ is the same no matter whether in a complete or incomplete data case. For incomplete data, there are often only $N_i<N$ observations for variable $i$, which means that using the `complete' sample size $N$ implausibly ignores the amounts of missing information inherent in incomplete data. Given this observation, a novel criterion called hierarchical BIC (HBIC) for factor analysis with incomplete data is proposed. The novelty is that it only uses the actual amounts of observed information, namely $N_i$'s, in the penalty term. Theoretically, it is shown that HBIC is a large sample approximation of variational Bayesian (VB) lower bound, and BIC is a further approximation of HBIC, which means that HBIC shares the theoretical consistency of BIC. Experiments on synthetic and real data sets are conducted to access the finite sample performance of HBIC, BIC, and related criteria with various missing rates. The results show that HBIC and BIC perform similarly when the missing rate is small, but HBIC is more accurate when the missing rate is not small.
Calibration or parameter identification is used with computational mechanics models related to observed data of the modeled process to find model parameters such that good similarity between model prediction and observation is achieved. We present a Bayesian calibration approach for surface coupled problems in computational mechanics based on measured deformation of an interface when no displacement data of material points is available. The interpretation of such a calibration problem as a statistical inference problem, in contrast to deterministic model calibration, is computationally more robust and allows the analyst to find a posterior distribution over possible solutions rather than a single point estimate. The proposed framework also enables the consideration of unavoidable uncertainties that are present in every experiment and are expected to play an important role in the model calibration process. To mitigate the computational costs of expensive forward model evaluations, we propose to learn the log-likelihood function from a controllable amount of parallel simulation runs using Gaussian process regression. We introduce and specifically study the effect of three different discrepancy measures for deformed interfaces between reference data and simulation. We show that a statistically based discrepancy measure results in the most expressive posterior distribution. We further apply the approach to numerical examples in higher model parameter dimensions and interpret the resulting posterior under uncertainty. In the examples, we investigate coupled multi-physics models of fluid-structure interaction effects in biofilms and find that the model parameters affect the results in a coupled manner.
We present a robust framework to perform linear regression with missing entries in the features. By considering an elliptical data distribution, and specifically a multivariate normal model, we are able to conditionally formulate a distribution for the missing entries and present a robust framework, which minimizes the worst case error caused by the uncertainty about the missing data. We show that the proposed formulation, which naturally takes into account the dependency between different variables, ultimately reduces to a convex program, for which a customized and scalable solver can be delivered. In addition to a detailed analysis to deliver such solver, we also asymptoticly analyze the behavior of the proposed framework, and present technical discussions to estimate the required input parameters. We complement our analysis with experiments performed on synthetic, semi-synthetic, and real data, and show how the proposed formulation improves the prediction accuracy and robustness, and outperforms the competing techniques.
Wireless sensor networks are among the most promising technologies of the current era because of their small size, lower cost, and ease of deployment. With the increasing number of wireless sensors, the probability of generating missing data also rises. This incomplete data could lead to disastrous consequences if used for decision-making. There is rich literature dealing with this problem. However, most approaches show performance degradation when a sizable amount of data is lost. Inspired by the emerging field of graph signal processing, this paper performs a new study of a Sobolev reconstruction algorithm in wireless sensor networks. Experimental comparisons on several publicly available datasets demonstrate that the algorithm surpasses multiple state-of-the-art techniques by a maximum margin of 54%. We further show that this algorithm consistently retrieves the missing data even during massive data loss situations.
Spurious correlations allow flexible models to predict well during training but poorly on related test distributions. Recent work has shown that models that satisfy particular independencies involving correlation-inducing \textit{nuisance} variables have guarantees on their test performance. Enforcing such independencies requires nuisances to be observed during training. However, nuisances, such as demographics or image background labels, are often missing. Enforcing independence on just the observed data does not imply independence on the entire population. Here we derive \acrshort{mmd} estimators used for invariance objectives under missing nuisances. On simulations and clinical data, optimizing through these estimates achieves test performance similar to using estimators that make use of the full data.
We commonly assume that data are a homogeneous set of observations when learning the structure of Bayesian networks. However, they often comprise different data sets that are related but not homogeneous because they have been collected in different ways or from different populations. In our previous work (Azzimonti, Corani and Scutari, 2021), we proposed a closed-form Bayesian Hierarchical Dirichlet score for discrete data that pools information across related data sets to learn a single encompassing network structure, while taking into account the differences in their probabilistic structures. In this paper, we provide an analogous solution for learning a Bayesian network from continuous data using mixed-effects models to pool information across the related data sets. We study its structural, parametric, predictive and classification accuracy and we show that it outperforms both conditional Gaussian Bayesian networks (that do not perform any pooling) and classical Gaussian Bayesian networks (that disregard the heterogeneous nature of the data). The improvement is marked for low sample sizes and for unbalanced data sets.
Considering two random variables with different laws to which we only have access through finite size iid samples, we address how to reweight the first sample so that its empirical distribution converges towards the true law of the second sample as the size of both samples goes to infinity. We study an optimal reweighting that minimizes the Wasserstein distance between the empirical measures of the two samples, and leads to an expression of the weights in terms of Nearest Neighbors. The consistency and some asymptotic convergence rates in terms of expected Wasserstein distance are derived, and do not need the assumption of absolute continuity of one random variable with respect to the other. These results have some application in Uncertainty Quantification for decoupled estimation and in the bound of the generalization error for the Nearest Neighbor Regression under covariate shift.
Practical data assimilation algorithms often contain hyper-parameters, which may arise due to, for instance, the use of certain auxiliary techniques like covariance inflation and localization in an ensemble Kalman filter, the re-parameterization of certain quantities such as model and/or observation error covariance matrices, and so on. Given the richness of the established assimilation algorithms, and the abundance of the approaches through which hyper-parameters are introduced to the assimilation algorithms, one may ask whether it is possible to develop a sound and generic method to efficiently choose various types of (sometimes high-dimensional) hyper-parameters. This work aims to explore a feasible, although likely partial, answer to this question. Our main idea is built upon the notion that a data assimilation algorithm with hyper-parameters can be considered as a parametric mapping that links a set of quantities of interest (e.g., model state variables and/or parameters) to a corresponding set of predicted observations in the observation space. As such, the choice of hyper-parameters can be recast as a parameter estimation problem, in which our objective is to tune the hyper-parameters in such a way that the resulted predicted observations can match the real observations to a good extent. From this perspective, we propose a hyper-parameter estimation workflow and investigate the performance of this workflow in an ensemble Kalman filter. In a series of experiments, we observe that the proposed workflow works efficiently even in the presence of a relatively large amount (up to $10^3$) of hyper-parameters, and exhibits reasonably good and consistent performance under various conditions.
Our main result shows that when agents' private information about an event are independent conditioning on the event's outcome, then, after an initial announcement, whenever agents have similar beliefs about the outcome, their information is aggregated. That is, there is no false consensus. Our main result has a short proof based on a natural information theoretic framework. A key ingredient of the framework is the equivalence between the sign of the ``interaction information'' and a super/sub-additive property of the value of people's information. This provides an intuitive interpretation and an interesting application of the interaction information, which measures the amount of information shared by three random variables. We illustrate the power of this information theoretic framework by reproving two additional results within it: 1) that agents quickly agree when while announcing beliefs in round robin fashion [Aaronson 2005]; and 2) results from [Chen et al 2010] on when prediction market agents should release information to maximize their payment. We also interpret the information theoretic framework and the above results in prediction markets by proving that the expected reward of revealing information is the conditional mutual information of the information revealed.
Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with a very high number of supports. The m-OT solves several smaller optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, the m-OT does not consider the relationship between mini-batches which leads to undesirable estimation. Moreover, the m-OT does not approximate a proper metric between probability measures since the identity property is not satisfied. To address these problems, we propose a novel mini-batch scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that finds the optimal coupling between mini-batches and it can be seen as an approximation to a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the BoMb-OT when the regularized parameter goes to infinity. Finally, we carry out experiments on various applications including deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow to show that the BoMb-OT can be widely applied and performs well in various applications.
Recent studies have shown that heavy tails can emerge in stochastic optimization and that the heaviness of the tails has links to the generalization error. While these studies have shed light on interesting aspects of the generalization behavior in modern settings, they relied on strong topological and statistical regularity assumptions, which are hard to verify in practice. Furthermore, it has been empirically illustrated that the relation between heavy tails and generalization might not always be monotonic in practice, contrary to the conclusions of existing theory. In this study, we establish novel links between the tail behavior and generalization properties of stochastic gradient descent (SGD), through the lens of algorithmic stability. We consider a quadratic optimization problem and use a heavy-tailed stochastic differential equation as a proxy for modeling the heavy-tailed behavior emerging in SGD. We then prove uniform stability bounds, which reveal the following outcomes: (i) Without making any exotic assumptions, we show that SGD will not be stable if the stability is measured with the squared-loss $x\mapsto x^2$, whereas it in turn becomes stable if the stability is instead measured with a surrogate loss $x\mapsto |x|^p$ with some $p<2$. (ii) Depending on the variance of the data, there exists a \emph{`threshold of heavy-tailedness'} such that the generalization error decreases as the tails become heavier, as long as the tails are lighter than this threshold. This suggests that the relation between heavy tails and generalization is not globally monotonic. (iii) We prove matching lower-bounds on uniform stability, implying that our bounds are tight in terms of the heaviness of the tails. We support our theory with synthetic and real neural network experiments.