亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the last two decades, pseudospectral methods based on Lagrange interpolants have flourished in solving trajectory optimization problems and their flight implementations. In a seemingly unjustified departure from these highly successful methods, a new starting point for trajectory optimization is proposed. This starting point is based on the recently-developed concept of universal Birkhoff interpolants. The new approach offers a substantial computational upgrade to the Lagrange theory in completely flattening the rapid growth of the condition numbers from O(N2) to O(1), where N is the number of grid points. In addition, the Birkhoff-specific primal-dual computations are isolated to a well-conditioned linear system even for nonlinear, nonconvex problems. This is part I of a two-part paper. In part I, a new theory is developed on the basis of two hypotheses. Other than these hypotheses, the theoretical development makes no assumptions on the choices of basis functions or the selection of grid points. Several covector mapping theorems are proved to establish the mathematical equivalence between direct and indirect Birkhoff methods. In part II of this paper (with Proulx), it is shown that a select family of Gegenbauer grids satisfy the two hypotheses required for the theory to hold. Numerical examples in part II illustrate the power and utility of the new theory.

相關內容

We present a novel method for initializing layers of tensorized neural networks in a way that avoids the explosion of the parameters of the matrix it emulates. The method is intended for layers with a high number of nodes in which there is a connection to the input or output of all or most of the nodes. The core of this method is the use of the Frobenius norm of this layer in an iterative partial form, so that it has to be finite and within a certain range. This norm is efficient to compute, fully or partially for most cases of interest. We apply the method to different layers and check its performance. We create a Python function to run it on an arbitrary layer, available in a Jupyter Notebook in the i3BQuantum repository: //github.com/i3BQuantumTeam/Q4Real/blob/e07c827651ef16bcf74590ab965ea3985143f891/Quantum-Inspired%20Variational%20Methods/Normalization_process.ipynb

We present a method to capture groupings of similar calls and determine their relative spatial distribution from a collection of crime record narratives. We first obtain a topic distribution for each narrative, and then propose a nearest neighbors relative density estimation (kNN-RDE) approach to obtain spatial relative densities per topic. Experiments over a large corpus ($n=475,019$) of narrative documents from the Atlanta Police Department demonstrate the viability of our method in capturing geographic hot-spot trends which call dispatchers do not initially pick up on and which go unnoticed due to conflation with elevated event density in general.

We develop a general and practical framework to address the problem of the optimal design of dynamic fee mechanisms for multiple blockchain resources. Our framework allows to compute policies that optimally trade-off between adjusting resource prices to handle persistent demand shifts versus being robust to local noise in the observed block demand. In the general case with more than one resource, our optimal policies correctly handle cross-effects (complementarity and substitutability) in resource demands. We also show how these cross-effects can be used to inform resource design, i.e. combining resources into bundles that have low demand-side cross-effects can yield simpler and more efficient price-update rules. Our framework is also practical, we demonstrate how it can be used to refine or inform the design of heuristic fee update rules such as EIP-1559 or EIP-4844 with two case studies. We then estimate a uni-dimensional version of our model using real market data from the Ethereum blockchain and empirically compare the performance of our optimal policies to EIP-1559.

We present a distributed conjugate gradient method for distributed optimization problems, where each agent computes an optimal solution of the problem locally without any central computation or coordination, while communicating with its immediate, one-hop neighbors over a communication network. Each agent updates its local problem variable using an estimate of the average conjugate direction across the network, computed via a dynamic consensus approach. Our algorithm enables the agents to use uncoordinated step-sizes. We prove convergence of the local variable of each agent to the optimal solution of the aggregate optimization problem, without requiring decreasing step-sizes. In addition, we demonstrate the efficacy of our algorithm in distributed state estimation problems, and its robust counterparts, where we show its performance compared to existing distributed first-order optimization methods.

Information compression techniques are majorly employed to address the concern of reducing communication cost over peer-to-peer links. In this paper, we investigate distributed Nash equilibrium (NE) seeking problems in a class of non-cooperative games over directed graphs with information compression. To improve communication efficiency, a compressed distributed NE seeking (C-DNES) algorithm is proposed to obtain a NE for games, where the differences between decision vectors and their estimates are compressed. The proposed algorithm is compatible with a general class of compression operators, including both unbiased and biased compressors. Moreover, our approach only requires the adjacency matrix of the directed graph to be row-stochastic, in contrast to past works that relied on balancedness or specific global network parameters. It is shown that C-DNES not only inherits the advantages of conventional distributed NE algorithms, achieving linear convergence rate for games with restricted strongly monotone mappings, but also saves communication costs in terms of transmitted bits. Finally, numerical simulations illustrate the advantages of C-DNES in saving communication cost by an order of magnitude under different compressors.

Numerically solving partial differential equations typically requires fine discretization to resolve necessary spatiotemporal scales, which can be computationally expensive. Recent advances in deep learning have provided a new approach to solving partial differential equations that involves the use of neural operators. Neural operators are neural network architectures that learn mappings between function spaces and have the capability to solve partial differential equations based on data. This study utilizes a novel neural operator called Hyena, which employs a long convolutional filter that is parameterized by a multilayer perceptron. The Hyena operator is an operation that enjoys sub-quadratic complexity and state space model to parameterize long convolution that enjoys a global receptive field. This mechanism enhances the model's comprehension of the input's context and enables data-dependent weight for different partial differential equations instances. To measure how effective the layers are in solving partial differential equations, we conduct experiments on Diffusion-Reaction equation and Navier Stokes equation. Our findings indicate Hyena Neural operator can serve as an efficient and accurate model for learning partial differential equations solution operator. The data and code used can be found at: //github.com/Saupatil07/Hyena-Neural-Operator

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司