In response to the growing demand for 3D object detection in applications such as autonomous driving, robotics, and augmented reality, this work focuses on the evaluation of semi-supervised learning approaches for point cloud data. The point cloud representation provides reliable and consistent observations regardless of lighting conditions, thanks to advances in LiDAR sensors. Data annotation is of paramount importance in the context of LiDAR applications, and automating 3D data annotation with semi-supervised methods is a pivotal challenge that promises to reduce the associated workload and facilitate the emergence of cost-effective LiDAR solutions. Nevertheless, the task of semi-supervised learning in the context of unordered point cloud data remains formidable due to the inherent sparsity and incomplete shapes that hinder the generation of accurate pseudo-labels. In this study, we consider these challenges by posing the question: "To what extent does unlabelled data contribute to the enhancement of model performance?" We show that improvements from previous semi-supervised methods may not be as profound as previously thought. Our results suggest that simple grid search hyperparameter tuning applied to a supervised model can lead to state-of-the-art performance on the ONCE dataset, while the contribution of unlabelled data appears to be comparatively less exceptional.
Traffic from distributed training of machine learning (ML) models makes up a large and growing fraction of the traffic mix in enterprise data centers. While work on distributed ML abounds, the network traffic generated by distributed ML has received little attention. Using measurements on a testbed network, we investigate the traffic characteristics generated by the training of the ResNet-50 neural network with an emphasis on studying its short-term burstiness. For the latter we propose metrics that quantify traffic burstiness at different time scales. Our analysis reveals that distributed ML traffic exhibits a very high degree of burstiness on short time scales, exceeding a 60:1 peak-to-mean ratio on time intervals as long as 5~ms. We observe that training software orchestrates transmissions in such a way that burst transmissions from different sources within the same application do not result in congestion and packet losses. An extrapolation of the measurement data to multiple applications underscores the challenges of distributed ML traffic for congestion and flow control algorithms.
Unlimited sampling was recently introduced to deal with the clipping or saturation of measurements where a modulo operator is applied before sampling. In this paper, we investigate the identifiability of the model where measurements are acquired under a discrete Fourier transform (DFT) sensing matrix first followed by a modulo operator (modulo-DFT). Firstly, based on the theorems of cyclotomic polynomials, we derive a sufficient condition for uniquely identifying the original signal in modulo-DFT. Additionally, for periodic bandlimited signals (PBSs) under unlimited sampling which can be viewed as a special case of modulo-DFT, the necessary and sufficient condition for the unique recovery of the original signal are provided. Moreover, we show that when the oversampling factor exceeds $3(1+1/P)$, PBS is always identifiable from the modulo samples, where $P$ is the number of harmonics including the fundamental component in the positive frequency part.
We develop a post-selection inference method for the Cox proportional hazards model with interval-censored data, which provides asymptotically valid p-values and confidence intervals conditional on the model selected by lasso. The method is based on a pivotal quantity that is shown to converge to a uniform distribution under local alternatives. The proof can be adapted to many other regression models, which is illustrated by the extension to generalized linear models and the Cox model with right-censored data. Our method involves estimation of the efficient information matrix, for which several approaches are proposed with proof of their consistency. Thorough simulation studies show that our method has satisfactory performance in samples of modest sizes. The utility of the method is illustrated via an application to an Alzheimer's disease study.
One among several advantages of measure transport methods is that they allow for a unified framework for processing and analysis of data distributed according to a wide class of probability measures. Within this context, we present results from computational studies aimed at assessing the potential of measure transport techniques, specifically, the use of triangular transport maps, as part of a workflow intended to support research in the biological sciences. Scarce data scenarios, which are common in domains such as radiation biology, are of particular interest. We find that when data is scarce, sparse transport maps are advantageous. In particular, statistics gathered from computing series of (sparse) adaptive transport maps, trained on a series of randomly chosen subsets of the set of available data samples, leads to uncovering information hidden in the data. As a result, in the radiation biology application considered here, this approach provides a tool for generating hypotheses about gene relationships and their dynamics under radiation exposure.
Efforts toward a comprehensive description of behavior have indeed facilitated the development of representation-based approaches that utilize deep learning to capture behavioral information. As behavior complexity increases, the expressive power of these models reaches a bottleneck. We coin the term ``behavioral molecular structure" and propose a new model called the Behavioral Molecular Structure (BMS). The model characterizes behaviors at the atomic level, analogizes behavioral attributes to atoms, and concretizes interrelations at the granularity of atoms using graphs. Here, we design three different downstream tasks to test the performance of the BMS model on public datasets. Additionally, we provide a preliminary theoretical analysis demonstrating that the BMS can offer effective expressiveness for complex behaviors.
AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.