{mayi_des}
In this paper, we study an initial-boundary value problem of Kirchhoff type involving memory term for non-homogeneous materials. The purpose of this research is threefold. First, we prove the existence and uniqueness of weak solutions to the problem using the Galerkin method. Second, to obtain numerical solutions efficiently, we develop a L1 type backward Euler-Galerkin FEM, which is $O(h+k^{2-\alpha})$ accurate, where $\alpha~ (0<\alpha<1)$ is the order of fractional time derivative, $h$ and $k$ are the discretization parameters for space and time directions, respectively. Next, to achieve the optimal rate of convergence in time, we propose a fractional Crank-Nicolson-Galerkin FEM based on L2-1$_{\sigma}$ scheme. We prove that the numerical solutions of this scheme converge to the exact solution with accuracy $O(h+k^{2})$. We also derive a priori bounds on numerical solutions for the proposed schemes. Finally, some numerical experiments are conducted to validate our theoretical claims.
The numerical solution of a linear Schr\"odinger equation in the semiclassical regime is very well understood in a torus $\mathbb{T}^d$. A raft of modern computational methods are precise and affordable, while conserving energy and resolving high oscillations very well. This, however, is far from the case with regard to its solution in $\mathbb{R}^d$, a setting more suitable for many applications. In this paper we extend the theory of splitting methods to this end. The main idea is to derive the solution using a spectral method from a combination of solutions of the free Schr\"odinger equation and of linear scalar ordinary differential equations, in a symmetric Zassenhaus splitting method. This necessitates detailed analysis of certain orthonormal spectral bases on the real line and their evolution under the free Schr\"odinger operator.
We consider the deformation of a geological structure with non-intersecting faults that can be represented by a layered system of viscoelastic bodies satisfying rate- and state-depending friction conditions along the common interfaces. We derive a mathematical model that contains classical Dieterich- and Ruina-type friction as special cases and accounts for possibly large tangential displacements. Semi-discretization in time by a Newmark scheme leads to a coupled system of non-smooth, convex minimization problems for rate and state to be solved in each time step. Additional spatial discretization by a mortar method and piecewise constant finite elements allows for the decoupling of rate and state by a fixed point iteration and efficient algebraic solution of the rate problem by truncated non-smooth Newton methods. Numerical experiments with a spring slider and a layered multiscale system illustrate the behavior of our model as well as the efficiency and reliability of the numerical solver.
In this paper, we propose a new trace finite element method for the {Laplace-Beltrami} eigenvalue problem. The method is proposed directly on a smooth manifold which is implicitly given by a level-set function and require high order numerical quadrature on the surface. A comprehensive analysis for the method is provided. We show that the eigenvalues of the discrete Laplace-Beltrami operator coincide with only part of the eigenvalues of an embedded problem, which further corresponds to the finite eigenvalues for a singular generalized algebraic eigenvalue problem. The finite eigenvalues can be efficiently solved by a rank-completing perturbation algorithm in {\it Hochstenbach et al. SIAM J. Matrix Anal. Appl., 2019} \cite{hochstenbach2019solving}. We prove the method has optimal convergence rate. Numerical experiments verify the theoretical analysis and show that the geometric consistency can improve the numerical accuracy significantly.
We develop an \textit{a posteriori} error analysis for the time of the first occurrence of an event, specifically, the time at which a functional of the solution to a partial differential equation (PDE) first achieves a threshold value on a given time interval. This novel quantity of interest (QoI) differs from classical QoIs which are modeled as bounded linear (or nonlinear) functionals. Taylor's theorem and an adjoint-based \textit{a posteriori} analysis is used to derive computable and accurate error estimates for semi-linear parabolic and hyperbolic PDEs. The accuracy of the error estimates is demonstrated through numerical solutions of the one-dimensional heat equation and linearized shallow water equations (SWE), representing parabolic and hyperbolic cases, respectively.
We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. The goal is to obtain a discretization consisting of "local" problems that can be solved on parallel computers efficiently. However, this introduces significant sources of error that must be evaluated. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.
We show that the problem of determining the feasibility of quadratic systems over $\mathbb{C}$, $\mathbb{R}$, and $\mathbb{Z}$ requires exponential time. This separates P and NP over these fields/rings in the BCSS model of computation.
In this article we prove that a class of Goppa codes whose Goppa polynomial is of the form $g(x) = x + x^q + \cdots + x^{q^{m-1}}$ where $m \geq 3$ (i.e. $g(x)$ is a trace polynomial from a field extension of degree $m \geq 3$) has a better minimum distance than what the Goppa bound $d \geq 2deg(g(x))+1$ implies. Our improvement is based on finding another Goppa polynomial $h$ such that $C(L,g) = C(M, h)$ but $deg(h) > deg(g)$. This is a significant improvement over Trace Goppa codes over quadratic field extensions (i.e. the case $m = 2$), as the Goppa bound for the quadratic case is sharp.
We consider the inverse problem of reconstructing the boundary curve of a cavity embedded in a bounded domain. The problem is formulated in two dimensions for the wave equation. We combine the Laguerre transform with the integral equation method and we reduce the inverse problem to a system of boundary integral equations. We propose an iterative scheme that linearizes the equation using the Fr\'echet derivative of the forward operator. The application of special quadrature rules results to an ill-conditioned linear system which we solve using Tikhonov regularization. The numerical results show that the proposed method produces accurate and stable reconstructions.
We develop an essentially optimal finite element approach for solving ergodic stochastic two-scale elliptic equations whose two-scale coefficient may depend also on the slow variable. We solve the limiting stochastic two-scale homogenized equation obtained from the stochastic two-scale convergence in the mean (A. Bourgeat, A. Mikelic and S. Wright, J. reine angew. Math, Vol. 456, 1994), whose solution comprises of the solution to the homogenized equation and the corrector, by truncating the infinite domain of the fast variable and using the sparse tensor product finite elements. We show that the convergence rate in terms of the truncation level is equivalent to that for solving the cell problems in the same truncated domain. Solving this equation, we obtain the solution to the homogenized equation and the corrector at the same time, using only a number of degrees of freedom that is essentially equivalent to that required for solving one cell problem. Optimal complexity is obtained when the corrector possesses sufficient regularity with respect to both the fast and the slow variables. Although the regularity norm of the corrector depends on the size of the truncated domain, we show that the convergence rate of the approximation for the solution to the homogenized equation is independent of the size of the truncated domain. With the availability of an analytic corrector, we construct a numerical corrector for the solution of the original stochastic two-scale equation from the finite element solution to the truncated stochastic two-scale homogenized equation. Numerical examples of quasi-periodic two-scale equations, and a stochastic two-scale equation of the checker board type, whose coefficient is discontinuous, confirm the theoretical results.
Escaping saddle points is a central research topic in nonconvex optimization. In this paper, we propose a simple gradient-based algorithm such that for a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$, it outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}(\log n/\epsilon^{1.75})$ iterations. Compared to the previous state-of-the-art algorithms by Jin et al. with $\tilde{O}((\log n)^{4}/\epsilon^{2})$ or $\tilde{O}((\log n)^{6}/\epsilon^{1.75})$ iterations, our algorithm is polynomially better in terms of $\log n$ and matches their complexities in terms of $1/\epsilon$. For the stochastic setting, our algorithm outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}((\log n)^{2}/\epsilon^{4})$ iterations. Technically, our main contribution is an idea of implementing a robust Hessian power method using only gradients, which can find negative curvature near saddle points and achieve the polynomial speedup in $\log n$ compared to the perturbed gradient descent methods. Finally, we also perform numerical experiments that support our results.