亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This report first takes stock of XAI-related requirements appearing in various EU directives, regulations, guidelines, and CJEU case law. This analysis of existing requirements will permit us to have a clearer vision of the purposes, the ``why'', of XAI, which we separate into five categories: contestability, empowerment/redressing information asymmetries, control over system performance, evaluation of algorithmic decisions, and public administration transparency. The analysis of legal requirements also permits us to create four categories of recipients for explainability: data science teams; human operators of the system; persons affected by algorithmic decisions, and regulators/judges/auditors. Lastly, we identify four main operational contexts for explainability: XAI for the upstream design and testing phase; XAI for human-on-the-loop control; XAI for human-in-the-loop control; and XAI for ex-post challenges and investigations.Second, we will present user-centered design methodology, which takes the purposes, the recipients and the operational context into account in order to develop optimal XAI solutions.Third, we will suggest a methodology to permit suppliers and users of high-risk AI applications to propose local XAI solutions that are effective in the sense of being ``meaningful'', for example, useful in light of the operational, safety and fundamental rights contexts. The process used to develop these ``meaningful'' XAI solutions will be based on user-centric design principles examined in the second part.Fourth, we will suggest that the European Commission issue guidelines to provide a harmonised approach to defining ``meaningful'' explanations based on the purposes, audiences and operational contexts of AI systems. These guidelines would apply to the AI Act, but also to the other EU texts requiring explanations for algorithmic systems and results.

相關內容

The reasoning capabilities of LLM (Large Language Model) are widely acknowledged in recent research, inspiring studies on tool learning and autonomous agents. LLM serves as the "brain" of agent, orchestrating multiple tools for collaborative multi-step task solving. Unlike methods invoking tools like calculators or weather APIs for straightforward tasks, multi-modal agents excel by integrating diverse AI models for complex challenges. However, current multi-modal agents neglect the significance of model selection: they primarily focus on the planning and execution phases, and will only invoke predefined task-specific models for each subtask, making the execution fragile. Meanwhile, other traditional model selection methods are either incompatible with or suboptimal for the multi-modal agent scenarios, due to ignorance of dependencies among subtasks arising by multi-step reasoning. To this end, we identify the key challenges therein and propose the $\textit{M}^3$ framework as a plug-in with negligible runtime overhead at test-time. This framework improves model selection and bolsters the robustness of multi-modal agents in multi-step reasoning. In the absence of suitable benchmarks, we create MS-GQA, a new dataset specifically designed to investigate the model selection challenge in multi-modal agents. Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies, thereby robustifying the overall reasoning process. Our code and benchmark: //github.com/LINs-lab/M3.

This paper introduces a novel method called Distance-Based Independence Screening for Canonical Analysis (DISCA) that performs simultaneous dimension reduction for a pair of random variables by optimizing the distance covariance (dCov). dCov is a statistic first proposed by Sz\'ekely et al. [2009] for independence testing. Compared with sufficient dimension reduction (SDR) and canonical correlation analysis (CCA)-based approaches, DISCA is a model-free approach that does not impose dimensional or distributional restrictions on variables and is more sensitive to nonlinear relationships. Theoretically, we establish a non-asymptotic error bound to provide a guarantee of our method's performance. Numerically, DISCA performs comparable to or better than other state-of-the-art algorithms and is computationally faster. All codes of our DISCA method can be found on GitHub https : //github.com/Yijin911/DISCA.git, including an R package named DISCA.

Pilot contamination is a critical issue in distributed massive MIMO networks, where the reuse of pilot sequences due to limited availability of orthogonal pilots for channel estimation leads to performance degradation. In this work, we propose a novel distributed pilot assignment scheme to effectively mitigate the impact of pilot contamination. Our proposed scheme not only reduces signaling overhead, but it also enhances fault-tolerance. Extensive numerical simulations are conducted to evaluate the performance of the proposed scheme. Our results establish that the proposed scheme outperforms existing centralized and distributed schemes in terms of mitigating pilot contamination and significantly enhancing network throughput.

Recent advancements have enabled human-robot collaboration through physical assistance and verbal guidance. However, limitations persist in coordinating robots' physical motions and speech in response to real-time changes in human behavior during collaborative contact tasks. We first derive principles from analyzing physical therapists' movements and speech during patient exercises. These principles are translated into control objectives to: 1) guide users through trajectories, 2) control motion and speech pace to align completion times with varying user cooperation, and 3) dynamically paraphrase speech along the trajectory. We then propose a Language Controller that synchronizes motion and speech, modulating both based on user cooperation. Experiments with 12 users show the Language Controller successfully aligns motion and speech compared to baselines. This provides a framework for fluent human-robot collaboration.

In recent years, larger and deeper models are springing up and continuously pushing state-of-the-art (SOTA) results across various fields like natural language processing (NLP) and computer vision (CV). However, despite promising results, it needs to be noted that the computations required by SOTA models have been increased at an exponential rate. Massive computations not only have a surprisingly large carbon footprint but also have negative effects on research inclusiveness and deployment on real-world applications. Green deep learning is an increasingly hot research field that appeals to researchers to pay attention to energy usage and carbon emission during model training and inference. The target is to yield novel results with lightweight and efficient technologies. Many technologies can be used to achieve this goal, like model compression and knowledge distillation. This paper focuses on presenting a systematic review of the development of Green deep learning technologies. We classify these approaches into four categories: (1) compact networks, (2) energy-efficient training strategies, (3) energy-efficient inference approaches, and (4) efficient data usage. For each category, we discuss the progress that has been achieved and the unresolved challenges.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.

Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司