This study delves into the pivotal role played by non-experts in knowledge production on open collaboration platforms, with a particular focus on the intricate process of tag development that culminates in the proposal of new glitch classes. Leveraging the power of Association Rule Mining (ARM), this research endeavors to unravel the underlying dynamics of collaboration among citizen scientists. By meticulously quantifying tag associations and scrutinizing their temporal dynamics, the study provides a comprehensive and nuanced understanding of how non-experts collaborate to generate valuable scientific insights. Furthermore, this investigation extends its purview to examine the phenomenon of ideological convergence within online citizen science knowledge production. To accomplish this, a novel measurement algorithm, based on the Mann-Kendall Trend Test, is introduced. This innovative approach sheds illuminating light on the dynamics of collaborative knowledge production, revealing both the vast opportunities and daunting challenges inherent in leveraging non-expert contributions for scientific research endeavors. Notably, the study uncovers a robust pattern of convergence in ideology, employing both the newly proposed convergence testing method and the traditional approach based on the stationarity of time series data. This groundbreaking discovery holds significant implications for understanding the dynamics of online citizen science communities and underscores the crucial role played by non-experts in shaping the scientific landscape of the digital age. Ultimately, this study contributes significantly to our understanding of online citizen science communities, highlighting their potential to harness collective intelligence for tackling complex scientific tasks and enriching our comprehension of collaborative knowledge production processes in the digital age.
As speech synthesis systems continue to make remarkable advances in recent years, the importance of robust deepfake detection systems that perform well in unseen systems has grown. In this paper, we propose a novel adaptive centroid shift (ACS) method that updates the centroid representation by continually shifting as the weighted average of bonafide representations. Our approach uses only bonafide samples to define their centroid, which can yield a specialized centroid for one-class learning. Integrating our ACS with one-class learning gathers bonafide representations into a single cluster, forming well-separated embeddings robust to unseen spoofing attacks. Our proposed method achieves an equal error rate (EER) of 2.19% on the ASVspoof 2021 deepfake dataset, outperforming all existing systems. Furthermore, the t-SNE visualization illustrates that our method effectively maps the bonafide embeddings into a single cluster and successfully disentangles the bonafide and spoof classes.
Genomic selection (GS), as a critical crop breeding strategy, plays a key role in enhancing food production and addressing the global hunger crisis. The predominant approaches in GS currently revolve around employing statistical methods for prediction. However, statistical methods often come with two main limitations: strong statistical priors and linear assumptions. A recent trend is to capture the non-linear relationships between markers by deep learning. However, as crop datasets are commonly long sequences with limited samples, the robustness of deep learning models, especially Transformers, remains a challenge. In this work, to unleash the unexplored potential of attention mechanism for the task of interest, we propose a simple yet effective Transformer-based framework that enables end-to-end training of the whole sequence. Via experiments on rice3k and wheat3k datasets, we show that, with simple tricks such as k-mer tokenization and random masking, Transformer can achieve overall superior performance against seminal methods on GS tasks of interest.
In this paper, we propose a method for online domain-incremental learning of acoustic scene classification from a sequence of different locations. Simply training a deep learning model on a sequence of different locations leads to forgetting of previously learned knowledge. In this work, we only correct the statistics of the Batch Normalization layers of a model using a few samples to learn the acoustic scenes from a new location without any excessive training. Experiments are performed on acoustic scenes from 11 different locations, with an initial task containing acoustic scenes from 6 locations and the remaining 5 incremental tasks each representing the acoustic scenes from a different location. The proposed approach outperforms fine-tuning based methods and achieves an average accuracy of 48.8% after learning the last task in sequence without forgetting acoustic scenes from the previously learned locations.
We study the problem of transmission of information over classical and classical-quantum channels in the one-shot regime where the underlying codes are constrained to be group codes. In the achievability part, we introduce a new input probability distribution that incorporates the encoding homomorphism and the underlying channel law. Using a random coding argument, we characterize the performance of group codes in terms of hypothesis testing relative-entropic quantities. In the converse part, we establish bounds by leveraging a hypothesis testing-based approach. Furthermore, we apply the one-shot result to the asymptotic stationary memoryless setting, and establish a single-letter lower bound on group capacities for both classes of channels. Moreover, we derive a matching upper bound on the asymptotic group capacity.
We introduce a novel method employing occupancy networks for the precise localization of 67 anatomical structures from single depth images captured from the exterior of the human body. This method considers the anatomical diversity across individuals. Our contributions include the application of occupancy networks for occluded structure localization, a robust method for estimating anatomical positions from depth images, and the creation of detailed, individualized 3D anatomical atlases. This approach promises improvements in medical imaging and automated diagnostic procedures by offering accurate, non-invasive localization of critical anatomical features.
Machine learning models have achieved high overall accuracy in medical image analysis. However, performance disparities on specific patient groups pose challenges to their clinical utility, safety, and fairness. This can affect known patient groups - such as those based on sex, age, or disease subtype - as well as previously unknown and unlabeled groups. Furthermore, the root cause of such observed performance disparities is often challenging to uncover, hindering mitigation efforts. In this paper, to address these issues, we leverage Slice Discovery Methods (SDMs) to identify interpretable underperforming subsets of data and formulate hypotheses regarding the cause of observed performance disparities. We introduce a novel SDM and apply it in a case study on the classification of pneumothorax and atelectasis from chest x-rays. Our study demonstrates the effectiveness of SDMs in hypothesis formulation and yields an explanation of previously observed but unexplained performance disparities between male and female patients in widely used chest X-ray datasets and models. Our findings indicate shortcut learning in both classification tasks, through the presence of chest drains and ECG wires, respectively. Sex-based differences in the prevalence of these shortcut features appear to cause the observed classification performance gap, representing a previously underappreciated interaction between shortcut learning and model fairness analyses.
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.
In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.
This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.