Large language models with instruction-following abilities have revolutionized the field of artificial intelligence. These models show exceptional generalizability to tackle various real-world tasks through their natural language interfaces. However, their performance heavily relies on high-quality exemplar data, which is often difficult to obtain. This challenge is further exacerbated when it comes to multimodal instruction following. We introduce TextBind, an almost annotation-free framework for empowering larger language models with the multi-turn interleaved multimodal instruction-following capabilities. Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model. To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models. We release our dataset, model, and demo to foster future research in the area of multimodal instruction following.
Large language models (LLMs) have been successfully adapted for interactive decision-making tasks like web navigation. While achieving decent performance, previous methods implicitly assume a forward-only execution mode for the model, where they only provide oracle trajectories as in-context examples to guide the model on how to reason in the environment. Consequently, the model could not handle more challenging scenarios not covered in the in-context examples, e.g., mistakes, leading to sub-optimal performance. To address this issue, we propose to model the interactive task as state space exploration, where the LLM agent transitions among a pre-defined set of states by performing actions to complete the task. This formulation enables flexible backtracking, allowing the model to recover from errors easily. We evaluate our proposed LLM Agent with State-Space ExploRation (LASER) on both the WebShop task and amazon.com. Experimental results show that LASER significantly outperforms previous methods and closes the gap with human performance on the web navigation task.
Large language models (LLMs) have revolutionized natural language processing. However, effectively incorporating complex and potentially noisy user interaction data remains a challenge. To address this, we propose User-LLM, a novel framework that leverages user embeddings to contextualize LLMs. These embeddings, distilled from diverse user interactions using self-supervised pretraining, capture latent user preferences and their evolution over time. We integrate these user embeddings with LLMs through cross-attention and soft-prompting, enabling LLMs to dynamically adapt to user context. Our comprehensive experiments on MovieLens, Amazon Review, and Google Local Review datasets demonstrate significant performance gains across various tasks. Notably, our approach outperforms text-prompt-based contextualization on long sequence tasks and tasks that require deep user understanding while being computationally efficient. We further incorporate Perceiver layers to streamline the integration between user encoders and LLMs, reducing computational demands.
Large language models (LLMs) have unveiled remarkable reasoning capabilities by exploiting chain-of-thought (CoT) prompting, which generates intermediate reasoning chains to serve as the rationale for deriving the answer. However, current CoT methods either simply employ general prompts such as Let's think step by step, or heavily rely on pre-defined task-specific demonstrations to attain preferable performances, thereby engendering an inescapable gap between performance and generalization. To bridge this gap, we propose GeM-CoT, a Generalizable CoT prompting mechanism in Mixed-task scenarios where the type of input questions is unknown. GeM-CoT first categorizes the question type and subsequently samples or constructs demonstrations from the corresponding data pool in an automatic pattern. With this technical design, GeM-CoT simultaneously enjoys superior generalization capabilities and remarkable performances on 10 public reasoning tasks and 23 BBH tasks.
Large language models (LLMs) have made significant strides in reasoning capabilities, with ongoing efforts to refine their reasoning through self-correction. However, recent studies suggest that self-correction can be limited or even counterproductive without external accurate knowledge, raising questions about the limits and effectiveness of self-correction. In this paper, we aim to enhance LLM's self-checking capabilities by meticulously designing training data, thereby improving the accuracy of self-correction. We conduct a detailed analysis of error types in mathematical reasoning and develop a tailored prompt, termed ``Step CoT Check''. Then we construct a checking-correction dataset for training models. After integrating the original CoT data and checking-correction data for training, we observe that models could improve their self-checking capabilities, thereby enhancing their self-correction capacity and eliminating the need for external feedback or ground truth labels to ascertain the endpoint of correction. We compare the performance of models fine-tuned with the ``Step CoT Check'' prompt against those refined using other promps within the context of checking-correction data. The ``Step CoT Check'' outperforms the other two check formats in model with lager parameters, providing more precise feedback thus achieving a higher rate of correctness. For reproducibility, all the datasets and codes are provided in \url{//github.com/bammt/Learn-to-check}.
Advancements in large language models (LLMs) have demonstrated their potential in facilitating high-level reasoning, logical reasoning and robotics planning. Recently, LLMs have also been able to generate reward functions for low-level robot actions, effectively bridging the interface between high-level planning and low-level robot control. However, the challenge remains that even with syntactically correct plans, robots can still fail to achieve their intended goals due to imperfect plans or unexpected environmental issues. To overcome this, Vision Language Models (VLMs) have shown remarkable success in tasks such as visual question answering. Leveraging the capabilities of VLMs, we present a novel framework called Robotic Replanning with Perception and Language Models (RePLan) that enables online replanning capabilities for long-horizon tasks. This framework utilizes the physical grounding provided by a VLM's understanding of the world's state to adapt robot actions when the initial plan fails to achieve the desired goal. We developed a Reasoning and Control (RC) benchmark with eight long-horizon tasks to test our approach. We find that RePLan enables a robot to successfully adapt to unforeseen obstacles while accomplishing open-ended, long-horizon goals, where baseline models cannot, and can be readily applied to real robots. Find more information at //replan-lm.github.io/replan.github.io/
Large language models (LLMs) like ChatGPT, exhibit powerful zero-shot and instruction-following capabilities, have catalyzed a revolutionary transformation across diverse research fields of artificial intelligence, especially for open-ended tasks. While the idea is less explored in the graph domain, despite the availability of numerous powerful graph models (GMs), they are restricted to tasks in a pre-defined form. Although several methods applying LLMs to graphs have been proposed, they fail to simultaneously handle the pre-defined and open-ended tasks, with LLM as a node feature enhancer or as a standalone predictor. To break this dilemma, we propose to bridge the pretrained GM and LLM by a Translator, named GraphTranslator, aiming to leverage GM to handle the pre-defined tasks effectively and utilize the extended interface of LLMs to offer various open-ended tasks for GM. To train such Translator, we propose a Producer capable of constructing the graph-text alignment data along node information, neighbor information and model information. By treating the node representation as a type of language, the proposed GraphTranslator empowers an LLM to make predictions based on node representation and language instructions, providing a unified perspective for both pre-defined and open-ended tasks. Extensive results show that the proposed GraphTranslator effectively improves the results of zero-shot node classification. The graph question answering experiments reveal our GraphTranslator potential across a broad spectrum of open-ended applications through language instructions.
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks. Despite this, their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language. While prompt-based methods can provide task descriptions to LLMs, they often fall short in facilitating a comprehensive understanding and execution of IR tasks, thereby limiting LLMs' applicability. To address this gap, in this work, we explore the potential of instruction tuning to enhance LLMs' proficiency in IR tasks. We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories: query understanding, document understanding, and query-document relationship understanding. The data are derived from 43 distinct datasets with manually written templates. Our empirical results reveal that INTERS significantly boosts the performance of various publicly available LLMs, such as LLaMA, Mistral, and Phi, in IR tasks. Furthermore, we conduct extensive experiments to analyze the effects of instruction design, template diversity, few-shot demonstrations, and the volume of instructions on performance. We make our dataset and the fine-tuned models publicly accessible at~\url{//github.com/DaoD/INTERS}.
Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.