亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the recent progress on 6D object pose estimation methods for robotic grasping, a substantial performance gap persists between the capabilities of these methods on existing datasets and their efficacy in real-world mobile manipulation tasks, particularly when robots rely solely on their monocular egocentric field of view (FOV). Existing real-world datasets primarily focus on table-top grasping scenarios, where a robotic arm is placed in a fixed position and the objects are centralized within the FOV of fixed external camera(s). Assessing performance on such datasets may not accurately reflect the challenges encountered in everyday mobile manipulation tasks within kitchen environments such as retrieving objects from higher shelves, sinks, dishwashers, ovens, refrigerators, or microwaves. To address this gap, we present Kitchen, a novel benchmark designed specifically for estimating the 6D poses of objects located in diverse positions within kitchen settings. For this purpose, we recorded a comprehensive dataset comprising around 205k real-world RGBD images for 111 kitchen objects captured in two distinct kitchens, utilizing one humanoid robot with its egocentric perspectives. Subsequently, we developed a semi-automated annotation pipeline, to streamline the labeling process of such datasets, resulting in the generation of 2D object labels, 2D object segmentation masks, and 6D object poses with minimized human effort. The benchmark, the dataset, and the annotation pipeline are available at //kitchen-dataset.github.io/KITchen.

相關內容

Large-scale pre-trained models (PTMs) such as BERT and GPT have achieved great success in diverse fields. The typical paradigm is to pre-train a big deep learning model on large-scale data sets, and then fine-tune the model on small task-specific data sets for downstream tasks. Although PTMs have rapidly progressed with wide real-world applications, they also pose significant risks of potential attacks. Existing backdoor attacks or data poisoning methods often build up the assumption that the attacker invades the computers of victims or accesses the target data, which is challenging in real-world scenarios. In this paper, we propose a novel framework for an invisible attack on PTMs with enhanced MD5 collision. The key idea is to generate two equal-size models with the same MD5 checksum by leveraging the MD5 chosen-prefix collision. Afterwards, the two ``same" models will be deployed on public websites to induce victims to download the poisoned model. Unlike conventional attacks on deep learning models, this new attack is flexible, covert, and model-independent. Additionally, we propose a simple defensive strategy for recognizing the MD5 chosen-prefix collision and provide a theoretical justification for its feasibility. We extensively validate the effectiveness and stealthiness of our proposed attack and defensive method on different models and data sets.

This paper presents VAEneu, an innovative autoregressive method for multistep ahead univariate probabilistic time series forecasting. We employ the conditional VAE framework and optimize the lower bound of the predictive distribution likelihood function by adopting the Continuous Ranked Probability Score (CRPS), a strictly proper scoring rule, as the loss function. This novel pipeline results in forecasting sharp and well-calibrated predictive distribution. Through a comprehensive empirical study, VAEneu is rigorously benchmarked against 12 baseline models across 12 datasets. The results unequivocally demonstrate VAEneu's remarkable forecasting performance. VAEneu provides a valuable tool for quantifying future uncertainties, and our extensive empirical study lays the foundation for future comparative studies for univariate multistep ahead probabilistic forecasting.

Over the past two decades, machine analysis of medical imaging has advanced rapidly, opening up significant potential for several important medical applications. As complicated diseases increase and the number of cases rises, the role of machine-based imaging analysis has become indispensable. It serves as both a tool and an assistant to medical experts, providing valuable insights and guidance. A particularly challenging task in this area is lesion segmentation, a task that is challenging even for experienced radiologists. The complexity of this task highlights the urgent need for robust machine learning approaches to support medical staff. In response, we present our novel solution: the D-TrAttUnet architecture. This framework is based on the observation that different diseases often target specific organs. Our architecture includes an encoder-decoder structure with a composite Transformer-CNN encoder and dual decoders. The encoder includes two paths: the Transformer path and the Encoders Fusion Module path. The Dual-Decoder configuration uses two identical decoders, each with attention gates. This allows the model to simultaneously segment lesions and organs and integrate their segmentation losses. To validate our approach, we performed evaluations on the Covid-19 and Bone Metastasis segmentation tasks. We also investigated the adaptability of the model by testing it without the second decoder in the segmentation of glands and nuclei. The results confirmed the superiority of our approach, especially in Covid-19 infections and the segmentation of bone metastases. In addition, the hybrid encoder showed exceptional performance in the segmentation of glands and nuclei, solidifying its role in modern medical image analysis.

This study explores the limitations of traditional Cybersecurity Awareness and Training (CSAT) programs and proposes an innovative solution using Generative Pre-Trained Transformers (GPT) to address these shortcomings. Traditional approaches lack personalization and adaptability to individual learning styles. To overcome these challenges, the study integrates GPT models to deliver highly tailored and dynamic cybersecurity learning expe-riences. Leveraging natural language processing capabilities, the proposed approach personalizes training modules based on individual trainee pro-files, helping to ensure engagement and effectiveness. An experiment using a GPT model to provide a real-time and adaptive CSAT experience through generating customized training content. The findings have demonstrated a significant improvement over traditional programs, addressing issues of en-gagement, dynamicity, and relevance. GPT-powered CSAT programs offer a scalable and effective solution to enhance cybersecurity awareness, provid-ing personalized training content that better prepares individuals to miti-gate cybersecurity risks in their specific roles within the organization.

The ability to determine the pose of a rover in an inertial frame autonomously is a crucial capability necessary for the next generation of surface rover missions on other planetary bodies. Currently, most on-going rover missions utilize ground-in-the-loop interventions to manually correct for drift in the pose estimate and this human supervision bottlenecks the distance over which rovers can operate autonomously and carry out scientific measurements. In this paper, we present ShadowNav, an autonomous approach for global localization on the Moon with an emphasis on driving in darkness and at nighttime. Our approach uses the leading edge of Lunar craters as landmarks and a particle filtering approach is used to associate detected craters with known ones on an offboard map. We discuss the key design decisions in developing the ShadowNav framework for use with a Lunar rover concept equipped with a stereo camera and an external illumination source. Finally, we demonstrate the efficacy of our proposed approach in both a Lunar simulation environment and on data collected during a field test at Cinder Lakes, Arizona.

In advancing parallel programming, particularly with OpenMP, the shift towards NLP-based methods marks a significant innovation beyond traditional S2S tools like Autopar and Cetus. These NLP approaches train on extensive datasets of examples to efficiently generate optimized parallel code, streamlining the development process. This method's strength lies in its ability to swiftly produce parallelized code that runs efficiently. However, this reliance on NLP models, without direct code analysis, can introduce inaccuracies, as these models might not fully grasp the nuanced semantics of the code they parallelize. We build OMP-Engineer, which balances the efficiency and scalability of NLP models with the accuracy and reliability of traditional methods, aiming to enhance the performance of automating parallelization while navigating its inherent challenges.

Despite their improved capabilities in generation and reasoning, adapting large language models (LLMs) to the biomedical domain remains challenging due to their immense size and corporate privacy. In this work, we propose MedAdapter, a unified post-hoc adapter for test-time adaptation of LLMs towards biomedical applications. Instead of fine-tuning the entire LLM, MedAdapter effectively adapts the original model by fine-tuning only a small BERT-sized adapter to rank candidate solutions generated by LLMs. Experiments demonstrate that MedAdapter effectively adapts both white-box and black-box LLMs in biomedical reasoning, achieving average performance improvements of 25.48% and 11.31%, respectively, without requiring extensive computational resources or sharing data with third parties. MedAdapter also yields superior performance when combined with train-time adaptation, highlighting a flexible and complementary solution to existing adaptation methods. Faced with the challenges of balancing model performance, computational resources, and data privacy, MedAdapter provides an efficient, privacy-preserving, cost-effective, and transparent solution for adapting LLMs to the biomedical domain.

Robotics presents a promising opportunity for enhancing bathing assistance, potentially to alleviate labor shortages and reduce care costs, while offering consistent and gentle care for individuals with physical disabilities. However, ensuring flexible and efficient cleaning of the human body poses challenges as it involves direct physical contact between the human and the robot, and necessitates simple, safe, and effective control. In this paper, we introduce a soft, expandable robotic manipulator with embedded capacitive proximity sensing arrays, designed for safe and efficient bathing assistance. We conduct a thorough evaluation of our soft manipulator, comparing it with a baseline rigid end effector in a human study involving 12 participants across $96$ bathing trails. Our soft manipulator achieves an an average cleaning effectiveness of 88.8% on arms and 81.4% on legs, far exceeding the performance of the baseline. Participant feedback further validates the manipulator's ability to maintain safety, comfort, and thorough cleaning.

The booming of Internet-of-Things (IoT) is expected to provide more intelligent and reliable communication services for higher network coverage, massive connectivity, and low-cost solutions for 6G services. However, frequent charging and battery replacement of these massive IoT devices brings a series of challenges. Zero energy devices, which rely on energy-harvesting technologies and can operate without battery replacement or charging, play a pivotal role in facilitating the massive use of IoT devices. In order to enable reliable communications of such low-power devices, Manchester-coded on-off keying (OOK) modulation and non-coherent detections are attractive techniques due to their energy efficiency, robustness in noisy environments, and simplicity in receiver design. Moreover, to extend their communication range, employing channel coding along with enhanced detection schemes is crucial. In this paper, a novel soft-decision decoder is designed for OOK-based low-power receivers to enhance their detection performance. In addition, exact closed-form expressions and two simplified approximations are derived for the log-likelihood ratio (LLR), an essential metric for soft decoding. Numerical results demonstrate the significant coverage gain achieved through soft decoding for convolutional code.

For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent AI agents since the mid-20th century. However, these efforts have mainly focused on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a sufficiently general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile and remarkable capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many research efforts have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for AI agents. Building upon this, we present a conceptual framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored to suit different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge when they form societies, and the insights they offer for human society. Finally, we discuss a range of key topics and open problems within the field.

北京阿比特科技有限公司