Deep learning offers a promising solution to improve spectrum access techniques by utilizing data-driven approaches to manage and share limited spectrum resources for emerging applications. For several of these applications, the sensitive wireless data (such as spectrograms) are stored in a shared database or multistakeholder cloud environment and are therefore prone to privacy leaks. This paper aims to address such privacy concerns by examining the representative case study of shared database scenarios in 5G Open Radio Access Network (O-RAN) networks where we have a shared database within the near-real-time (near-RT) RAN intelligent controller. We focus on securing the data that can be used by machine learning (ML) models for spectrum sharing and interference mitigation applications without compromising the model and network performances. The underlying idea is to leverage a (i) Shuffling-based learnable encryption technique to encrypt the data, following which, (ii) employ a custom Vision transformer (ViT) as the trained ML model that is capable of performing accurate inferences on such encrypted data. The paper offers a thorough analysis and comparisons with analogous convolutional neural networks (CNN) as well as deeper architectures (such as ResNet-50) as baselines. Our experiments showcase that the proposed approach significantly outperforms the baseline CNN with an improvement of 24.5% and 23.9% for the percent accuracy and F1-Score respectively when operated on encrypted data. Though deeper ResNet-50 architecture is obtained as a slightly more accurate model, with an increase of 4.4%, the proposed approach boasts a reduction of parameters by 99.32%, and thus, offers a much-improved prediction time by nearly 60%.
Fine-tuning in information retrieval systems using pre-trained language models (PLM-based IR) requires learning query representations and query-document relations, in addition to downstream task-specific learning. This study introduces coarse-tuning as an intermediate learning stage that bridges pre-training and fine-tuning. By learning query representations and query-document relations in coarse-tuning, we aim to reduce the load of fine-tuning and improve the learning effect of downstream IR tasks. We propose Query-Document Pair Prediction (QDPP) for coarse-tuning, which predicts the appropriateness of query-document pairs. Evaluation experiments show that the proposed method significantly improves MRR and/or nDCG@5 in four ad-hoc document retrieval datasets. Furthermore, the results of the query prediction task suggested that coarse-tuning facilitated learning of query representation and query-document relations.
Dynamic analyses are a standard approach to analyzing and testing concurrent programs. Such techniques observe program traces and analyze them to infer the presence or absence of bugs. At its core, each analysis maintains a partial order $P$ that represents order dependencies between events of the analyzed trace $\sigma$. Naturally, the scalability of the analysis largely depends on how efficiently it maintains $P$. The standard data structure for this task has thus far been vector clocks. These, however, are slow for analyses that follow a non-streaming style, costing $O(n)$ for inserting (and propagating) each new ordering in $P$, where $n$ is the size of $\sigma$, while they cannot handle the deletion of existing orderings. In this paper we develop collective sparse segment trees (CSSTs), a simple but elegant data structure for generically maintaining a partial order $P$. CSSTs thrive when the width $k$ of $P$ is much smaller than the size $n$ of its domain, allowing inserting, deleting, and querying for orderings in $P$ to run in $O(logn)$ time. For a concurrent trace, $k$ is bounded by the number of its threads, and is normally orders of magnitude smaller than its size $n$, making CSSTs fitting for this setting. Our experimental results confirm that CSSTs are the best data structure currently to handle a range of dynamic analyses from existing literature.
This work introduces a preference learning method that ensures adherence to given specifications, with an application to autonomous vehicles. Our approach incorporates the priority ordering of Signal Temporal Logic (STL) formulas describing traffic rules into a learning framework. By leveraging Parametric Weighted Signal Temporal Logic (PWSTL), we formulate the problem of safety-guaranteed preference learning based on pairwise comparisons and propose an approach to solve this learning problem. Our approach finds a feasible valuation for the weights of the given PWSTL formula such that, with these weights, preferred signals have weighted quantitative satisfaction measures greater than their non-preferred counterparts. The feasible valuation of weights given by our approach leads to a weighted STL formula that can be used in correct-and-custom-by-construction controller synthesis. We demonstrate the performance of our method with a pilot human subject study in two different simulated driving scenarios involving a stop sign and a pedestrian crossing. Our approach yields competitive results compared to existing preference learning methods in terms of capturing preferences and notably outperforms them when safety is considered.
As machine learning workloads significantly increase energy consumption, sustainable data centers with low carbon emissions are becoming a top priority for governments and corporations worldwide. This requires a paradigm shift in optimizing power consumption in cooling and IT loads, shifting flexible loads based on the availability of renewable energy in the power grid, and leveraging battery storage from the uninterrupted power supply in data centers, using collaborative agents. The complex association between these optimization strategies and their dependencies on variable external factors like weather and the power grid carbon intensity makes this a hard problem. Currently, a real-time controller to optimize all these goals simultaneously in a dynamic real-world setting is lacking. We propose a Data Center Carbon Footprint Reduction (DC-CFR) multi-agent Reinforcement Learning (MARL) framework that optimizes data centers for the multiple objectives of carbon footprint reduction, energy consumption, and energy cost. The results show that the DC-CFR MARL agents effectively resolved the complex interdependencies in optimizing cooling, load shifting, and energy storage in real-time for various locations under real-world dynamic weather and grid carbon intensity conditions. DC-CFR significantly outperformed the industry standard ASHRAE controller with a considerable reduction in carbon emissions (14.5%), energy usage (14.4%), and energy cost (13.7%) when evaluated over one year across multiple geographical regions.
Sparse code multiple access (SCMA) is a promising technique for enabling massive connectivity and high spectrum efficiency in future machine-type communication networks. However, its performance crucially depends on well-designed multi-dimensional codebooks. In this paper, we propose a novel progressive codebook optimization scheme that can achieve near-optimal performance over downlink fading channels. By examining the pair-wise error probability (PEP), we first derive the symbol error rate (SER) performance of the sparse codebook in downlink channels, which is considered as the design criterion for codebook optimization. Then, the benchmark constellation group at a single resource element is optimized with a sequential quadratic programming approach. Next, we propose a constellation group reconstruction process to assign the sub-constellations in each resource element (RE) progressively. For the current RE, the assignment of the sub-constellations is designed by minimizing the error performance of the product distance of the superimposed codewords in previous REs. The design process involves both permutation and labeling of the sub-constellations in the benchmark constellation group. Simulation results show that the proposed codebooks exhibit significant performance gains over state-of-the-art codebooks in the low signal-to-noise ratio (SNR) region over various downlink fading channels.
The rapid growth of machine learning capabilities and the adoption of data processing methods using vector embeddings sparked a great interest in creating systems for vector data management. While the predominant approach of vector data management is to use specialized index structures for fast search over the entirety of the vector embeddings, once combined with other (meta)data, the search queries can also become selective on relational attributes - typical for analytical queries. As using vector indexes differs from traditional relational data access, we revisit and analyze alternative access paths for efficient mixed vector-relational search. We first evaluate the accurate but exhaustive scan-based search and propose hardware optimizations and alternative tensor-based formulation and batching to offset the cost. We outline the complex access-path design space, primarily driven by relational selectivity, and the decisions to consider when selecting an exhaustive scan-based search against an approximate index-based approach. Since the vector index primarily avoids expensive computation across the entire dataset, contrary to the common relational knowledge, it is better to scan at lower selectivity and probe at higher, with a cross-point between the two approaches dictated by data dimensionality and the number of concurrent search queries.
We propose a data-driven control method for systems with aleatoric uncertainty, for example, robot fleets with variations between agents. Our method leverages shared trajectory data to increase the robustness of the designed controller and thus facilitate transfer to new variations without the need for prior parameter and uncertainty estimations. In contrast to existing work on experience transfer for performance, our approach focuses on robustness and uses data collected from multiple realizations to guarantee generalization to unseen ones. Our method is based on scenario optimization combined with recent formulations for direct data-driven control. We derive lower bounds on the amount of data required to achieve quadratic stability for probabilistic systems with aleatoric uncertainty and demonstrate the benefits of our data-driven method through a numerical example. We find that the learned controllers generalize well to high variations in the dynamics even when based on only a few short open-loop trajectories. Robust experience transfer enables the design of safe and robust controllers that work out of the box without any additional learning during deployment.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.