亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial intelligence models and methods commonly lack causal interpretability. Despite the advancements in interpretable machine learning (IML) methods, they frequently assign importance to features which lack causal influence on the outcome variable. Selecting causally relevant features among those identified as relevant by these methods, or even before model training, would offer a solution. Feature selection methods utilizing information theoretical quantities have been successful in identifying statistically relevant features. However, the information theoretical quantities they are based on do not incorporate causality, rendering them unsuitable for such scenarios. To address this challenge, this article proposes information theoretical quantities that incorporate the causal structure of the system, which can be used to evaluate causal importance of features for some given outcome variable. Specifically, we introduce causal versions of entropy and mutual information, termed causal entropy and causal information gain, which are designed to assess how much control a feature provides over the outcome variable. These newly defined quantities capture changes in the entropy of a variable resulting from interventions on other variables. Fundamental results connecting these quantities to the existence of causal effects are derived. The use of causal information gain in feature selection is demonstrated, highlighting its superiority over standard mutual information in revealing which features provide control over a chosen outcome variable. Our investigation paves the way for the development of methods with improved interpretability in domains involving causation.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 監督 · Pair · · entity ·
2023 年 10 月 29 日

We introduce a novel graph-based framework for alleviating key challenges in distantly-supervised relation extraction and demonstrate its effectiveness in the challenging and important domain of biomedical data. Specifically, we propose a graph view of sentence bags referring to an entity pair, which enables message-passing based aggregation of information related to the entity pair over the sentence bag. The proposed framework alleviates the common problem of noisy labeling in distantly supervised relation extraction and also effectively incorporates inter-dependencies between sentences within a bag. Extensive experiments on two large-scale biomedical relation datasets and the widely utilized NYT dataset demonstrate that our proposed framework significantly outperforms the state-of-the-art methods for biomedical distant supervision relation extraction while also providing excellent performance for relation extraction in the general text mining domain.

The constant growth of DNNs makes them challenging to implement and run efficiently on traditional compute-centric architectures. Some accelerators have attempted to add more compute units and on-chip buffers to solve the memory wall problem without much success, and sometimes even worsening the issue since more compute units also require higher memory bandwidth. Prior works have proposed the design of memory-centric architectures based on the Near-Data Processing (NDP) paradigm. NDP seeks to break the memory wall by moving the computations closer to the memory hierarchy, reducing the data movements and their cost as much as possible. The 3D-stacked memory is especially appealing for DNN accelerators due to its high-density/low-energy storage and near-memory computation capabilities to perform the DNN operations massively in parallel. However, memory accesses remain as the main bottleneck for running modern DNNs efficiently. To improve the efficiency of DNN inference we present QeiHaN, a hardware accelerator that implements a 3D-stacked memory-centric weight storage scheme to take advantage of a logarithmic quantization of activations. In particular, since activations of FC and CONV layers of modern DNNs are commonly represented as powers of two with negative exponents, QeiHaN performs an implicit in-memory bit-shifting of the DNN weights to reduce memory activity. Only the meaningful bits of the weights required for the bit-shift operation are accessed. Overall, QeiHaN reduces memory accesses by 25\% compared to a standard memory organization. We evaluate QeiHaN on a popular set of DNNs. On average, QeiHaN provides $4.3x$ speedup and $3.5x$ energy savings over a Neurocube-like accelerator.

A significant challenge in control theory and technology is to devise agile and less resource-intensive experiments for evaluating the performance and feasibility of control algorithms for the collective coordination of large-scale complex systems. Many new methodologies are based on macroscopic representations of the emerging system behavior, and can be easily validated only through numerical simulations, because of the inherent hurdle of developing full scale experimental platforms. In this paper, we introduce a novel hybrid mixed reality set-up for testing swarm robotics techniques, focusing on the collective motion of robotic swarms. This hybrid apparatus combines both real differential drive robots and virtual agents to create a heterogeneous swarm of tunable size. We validate the methodology by extending to higher dimensions, and investigating experimentally, continuification-based control methods for swarms. Our study demonstrates the versatility and effectiveness of the platform for conducting large-scale swarm robotics experiments. Also, it contributes new theoretical insights into control algorithms exploiting continuification approaches.

Simultaneous sequence generation is a pivotal task for real-time scenarios, such as streaming speech recognition, simultaneous machine translation and simultaneous speech translation, where the target sequence is generated while receiving the source sequence. The crux of achieving high-quality generation with low latency lies in identifying the optimal moments for generating, accomplished by learning a mapping between the source and target sequences. However, existing methods often rely on task-specific heuristics for different sequence types, limiting the model's capacity to adaptively learn the source-target mapping and hindering the exploration of multi-task learning for various simultaneous tasks. In this paper, we propose a unified segment-to-segment framework (Seg2Seg) for simultaneous sequence generation, which learns the mapping in an adaptive and unified manner. During the process of simultaneous generation, the model alternates between waiting for a source segment and generating a target segment, making the segment serve as the natural bridge between the source and target. To accomplish this, Seg2Seg introduces a latent segment as the pivot between source to target and explores all potential source-target mappings via the proposed expectation training, thereby learning the optimal moments for generating. Experiments on multiple simultaneous generation tasks demonstrate that Seg2Seg achieves state-of-the-art performance and exhibits better generality across various tasks.

At modern warehouses, mobile robots transport packages and drop them into collection bins/chutes based on shipping destinations grouped by, e.g., the ZIP code. System throughput, measured as the number of packages sorted per unit of time, determines the efficiency of the warehouse. This research develops a scalable, high-throughput multi-robot parcel sorting solution, decomposing the task into two related processes, bin assignment and offline/online multi-robot path planning, and optimizing both. Bin assignment matches collection bins with package types to minimize traveling costs. Subsequently, robots are assigned to pick up and drop packages into assigned bins. Multiple highly effective bin assignment algorithms are proposed that can work with an arbitrary planning algorithm. We propose a decentralized path planning routine using only local information to route the robots over a carefully constructed directed road network for multi-robot path planning. Our decentralized planner, provably probabilistically deadlock-free, consistently delivers near-optimal results on par with some top-performing centralized planners while significantly reducing computation times by orders of magnitude. Extensive simulations show that our overall framework delivers promising performances.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司