亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Synthetic data generation has been a growing area of research in recent years. However, its potential applications in serious games have not been thoroughly explored. Advances in this field could anticipate data modelling and analysis, as well as speed up the development process. The COVID-19 pandemic has enlarged such a phenomenon, To try to fill this gap in the literature, we propose a simulator architecture for generating probabilistic synthetic data for serious games based on interactive narratives. This architecture is designed to be generic and modular so that it can be used by other researchers on similar problems. To simulate the interaction of synthetic players with questions, we use a cognitive testing model based on the Item Response Theory framework. We also show how probabilistic graphical models (in particular Bayesian networks) can be used to introduce expert knowledge and external data into the simulation. Finally, we apply the proposed architecture and methods in a use case of a serious game focused on cyberbullying. We perform Bayesian inference experiments using a hierarchical model to demonstrate the identifiability and robustness of the generated data.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Performer · 訓練數據 · 圖形處理器 · MoDELS ·
2023 年 7 月 24 日

Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data, owing to their ability to capture intricate dependencies and relationships between nodes. They excel in various applications, including semi-supervised node classification, link prediction, and graph generation. However, it is important to acknowledge that the majority of state-of-the-art GNN models are built upon the assumption of an in-distribution setting, which hinders their performance on real-world graphs with dynamic structures. In this article, we aim to assess the impact of training GNNs on localized subsets of the graph. Such restricted training data may lead to a model that performs well in the specific region it was trained on but fails to generalize and make accurate predictions for the entire graph. In the context of graph-based semi-supervised learning (SSL), resource constraints often lead to scenarios where the dataset is large, but only a portion of it can be labeled, affecting the model's performance. This limitation affects tasks like anomaly detection or spam detection when labeling processes are biased or influenced by human subjectivity. To tackle the challenges posed by localized training data, we approach the problem as an out-of-distribution (OOD) data issue by by aligning the distributions between the training data, which represents a small portion of labeled data, and the graph inference process that involves making predictions for the entire graph. We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference, improving model performance on OOD data. Extensive tests on popular GNN models show significant performance improvement on three citation GNN benchmark datasets. The regularization approach effectively enhances model adaptation and generalization, overcoming challenges posed by OOD data.

To enhance the quality of generated stories, recent story generation models have been investigating the utilization of higher-level attributes like plots or commonsense knowledge. The application of prompt-based learning with large language models (LLMs), exemplified by GPT-3, has exhibited remarkable performance in diverse natural language processing (NLP) tasks. This paper conducts a comprehensive investigation, utilizing both automatic and human evaluation, to compare the story generation capacity of LLMs with recent models across three datasets with variations in style, register, and length of stories. The results demonstrate that LLMs generate stories of significantly higher quality compared to other story generation models. Moreover, they exhibit a level of performance that competes with human authors, albeit with the preliminary observation that they tend to replicate real stories in situations involving world knowledge, resembling a form of plagiarism.

The potential of artificial intelligence (AI)-based large language models (LLMs) holds considerable promise in revolutionizing education, research, and practice. However, distinguishing between human-written and AI-generated text has become a significant task. This paper presents a comparative study, introducing a novel dataset of human-written and LLM-generated texts in different genres: essays, stories, poetry, and Python code. We employ several machine learning models to classify the texts. Results demonstrate the efficacy of these models in discerning between human and AI-generated text, despite the dataset's limited sample size. However, the task becomes more challenging when classifying GPT-generated text, particularly in story writing. The results indicate that the models exhibit superior performance in binary classification tasks, such as distinguishing human-generated text from a specific LLM, compared to the more complex multiclass tasks that involve discerning among human-generated and multiple LLMs. Our findings provide insightful implications for AI text detection while our dataset paves the way for future research in this evolving area.

Random noise arising from physical processes is an inherent characteristic of measurements and a limiting factor for most signal processing and data analysis tasks. Given the recent interest in generative adversarial networks (GANs) for data-driven modeling, it is important to determine to what extent GANs can faithfully reproduce noise in target data sets. In this paper, we present an empirical investigation that aims to shed light on this issue for time series. Namely, we assess two general-purpose GANs for time series that are based on the popular deep convolutional GAN (DCGAN) architecture, a direct time-series model and an image-based model that uses a short-time Fourier transform (STFT) data representation. The GAN models are trained and quantitatively evaluated using distributions of simulated noise time series with known ground-truth parameters. Target time series distributions include a broad range of noise types commonly encountered in physical measurements, electronics, and communication systems: band-limited thermal noise, power law noise, shot noise, and impulsive noise. We find that GANs are capable of learning many noise types, although they predictably struggle when the GAN architecture is not well suited to some aspects of the noise, e.g., impulsive time-series with extreme outliers. Our findings provide insights into the capabilities and potential limitations of current approaches to time-series GANs and highlight areas for further research. In addition, our battery of tests provides a useful benchmark to aid the development of deep generative models for time series.

Industry standard frameworks are now widespread for labeling the high-level stages and granular actions of attacker and defender behavior in cyberspace. While these labels are used for atomic actions, and to some extent for sequences of actions, there remains a need for labeled data from realistic full-scale attacks. This data is valuable for better understanding human actors' decisions, behaviors, and individual attributes. The analysis could lead to more effective attribution and disruption of attackers. We present a methodological approach and exploratory case study for systematically analyzing human behavior during a cyber offense/defense capture-the-flag (CTF) game. We describe the data collection and analysis to derive a metric called keystroke accuracy. After collecting players' commands, we label them using the MITRE ATT&CK framework using a new tool called Pathfinder. We present results from preliminary analysis of participants' keystroke accuracy and its relation to score outcome in CTF games. We describe frequency of action classification within the MITRE ATT&CK framework and discuss some of the mathematical trends suggested by our observations. We conclude with a discussion of extensions for the methodology, including performance evaluation during games and the potential use of this methodology for training artificial intelligence.

Extracting noisy or incorrectly labeled samples from a labeled dataset with hard/difficult samples is an important yet under-explored topic. Two general and often independent lines of work exist, one focuses on addressing noisy labels, and another deals with hard samples. However, when both types of data are present, most existing methods treat them equally, which results in a decline in the overall performance of the model. In this paper, we first design various synthetic datasets with custom hardness and noisiness levels for different samples. Our proposed systematic empirical study enables us to better understand the similarities and more importantly the differences between hard-to-learn samples and incorrectly-labeled samples. These controlled experiments pave the way for the development of methods that distinguish between hard and noisy samples. Through our study, we introduce a simple yet effective metric that filters out noisy-labeled samples while keeping the hard samples. We study various data partitioning methods in the presence of label noise and observe that filtering out noisy samples from hard samples with this proposed metric results in the best datasets as evidenced by the high test accuracy achieved after models are trained on the filtered datasets. We demonstrate this for both our created synthetic datasets and for datasets with real-world label noise. Furthermore, our proposed data partitioning method significantly outperforms other methods when employed within a semi-supervised learning framework.

Large Language Models have many methods for solving the same problem. This introduces novel strengths (different methods may work well for different problems) and weaknesses (it may be difficult for users to know which method to use). In this paper, we introduce Multi-Method Self-Training (MMST), where one method is trained on the filtered outputs of another, allowing us to augment the strengths and ameliorate the weaknesses of each method. Using a 176B parameter model trained on both language and code, we show that MMST can 1) improve the less performant method (up to 30%) making the model easier to use, 2) improve the more performant method (up to 32.2%) making the model more performant, and 3) improve the performance of related but distinct tasks (up to 10.3%) by improving the ability of the model to generate rationales. We then conduct ablation analyses to explore why MMST works. We show that MMST generates more data than traditional self-training, but the improvement in performance is driven by the use of multiple methods. We also analyze prompt-engineering and anti-correlated performance between methods as means of making MMST more effective. We hope the evidence from our paper motivates machine learning researchers to explore ways in which advances in language models allow for new forms of training.

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司