In the domain of intelligent transportation systems (ITS), collaborative perception has emerged as a promising approach to overcome the limitations of individual perception by enabling multiple agents to exchange information, thus enhancing their situational awareness. Collaborative perception overcomes the limitations of individual sensors, allowing connected agents to perceive environments beyond their line-of-sight and field of view. However, the reliability of collaborative perception heavily depends on the data aggregation strategy and communication bandwidth, which must overcome the challenges posed by limited network resources. To improve the precision of object detection and alleviate limited network resources, we propose an intermediate collaborative perception solution in the form of a graph attention network (GAT). The proposed approach develops an attention-based aggregation strategy to fuse intermediate representations exchanged among multiple connected agents. This approach adaptively highlights important regions in the intermediate feature maps at both the channel and spatial levels, resulting in improved object detection precision. We propose a feature fusion scheme using attention-based architectures and evaluate the results quantitatively in comparison to other state-of-the-art collaborative perception approaches. Our proposed approach is validated using the V2XSim dataset. The results of this work demonstrate the efficacy of the proposed approach for intermediate collaborative perception in improving object detection average precision while reducing network resource usage.
Network Intrusion Detection Systems (NIDS) have been extensively investigated by monitoring real network traffic and analyzing suspicious activities. However, there are limitations in detecting specific types of attacks with NIDS, such as Advanced Persistent Threats (APT). Additionally, NIDS is restricted in observing complete traffic information due to encrypted traffic or a lack of authority. To address these limitations, a Host-based Intrusion Detection system (HIDS) evaluates resources in the host, including logs, files, and folders, to identify APT attacks that routinely inject malicious files into victimized nodes. In this study, a hybrid network intrusion detection system that combines NIDS and HIDS is proposed to improve intrusion detection performance. The feature flattening technique is applied to flatten two-dimensional host-based features into one-dimensional vectors, which can be directly used by traditional Machine Learning (ML) models. A two-stage collaborative classifier is introduced that deploys two levels of ML algorithms to identify network intrusions. In the first stage, a binary classifier is used to detect benign samples. All detected attack types undergo a multi-class classifier to reduce the complexity of the original problem and improve the overall detection performance. The proposed method is shown to generalize across two well-known datasets, CICIDS 2018 and NDSec-1. Performance of XGBoost, which represents conventional ML, is evaluated. Combining host and network features enhances attack detection performance (macro average F1 score) by 8.1% under the CICIDS 2018 dataset and 3.7% under the NDSec-1 dataset. Meanwhile, the two-stage collaborative classifier improves detection performance for most single classes, especially for DoS-LOIC-UDP and DoS-SlowHTTPTest, with improvements of 30.7% and 84.3%, respectively, when compared with the traditional ML XGBoost.
Besides standard cameras, autonomous vehicles typically include multiple additional sensors, such as lidars and radars, which help acquire richer information for perceiving the content of the driving scene. While several recent works focus on fusing certain pairs of sensors - such as camera with lidar or radar - by using architectural components specific to the examined setting, a generic and modular sensor fusion architecture is missing from the literature. In this work, we propose HRFuser, a modular architecture for multi-modal 2D object detection. It fuses multiple sensors in a multi-resolution fashion and scales to an arbitrary number of input modalities. The design of HRFuser is based on state-of-the-art high-resolution networks for image-only dense prediction and incorporates a novel multi-window cross-attention block as the means to perform fusion of multiple modalities at multiple resolutions. We demonstrate via extensive experiments on nuScenes and the adverse conditions DENSE datasets that our model effectively leverages complementary features from additional modalities, substantially improving upon camera-only performance and consistently outperforming state-of-the-art 3D and 2D fusion methods evaluated on 2D object detection metrics. The source code is publicly available.
We consider the problem of estimating a scalar target parameter in the presence of nuisance parameters. Replacing the unknown nuisance parameter with a nonparametric estimator, e.g.,a machine learning (ML) model, is convenient but has shown to be inefficient due to large biases. Modern methods, such as the targeted minimum loss-based estimation (TMLE) and double machine learning (DML), achieve optimal performance under flexible assumptions by harnessing ML estimates while mitigating the plug-in bias. To avoid a sub-optimal bias-variance trade-off, these methods perform a debiasing step of the plug-in pre-estimate. Existing debiasing methods require the influence function of the target parameter as input. However, deriving the IF requires specialized expertise and thus obstructs the adaptation of these methods by practitioners. We propose a novel way to debias plug-in estimators which (i) is efficient, (ii) does not require the IF to be implemented, (iii) is computationally tractable, and therefore can be readily adapted to new estimation problems and automated without analytic derivations by the user. We build on the TMLE framework and update a plug-in estimate with a regularized likelihood maximization step over a nonparametric model constructed with a reproducing kernel Hilbert space (RKHS), producing an efficient plug-in estimate for any regular target parameter. Our method, thus, offers the efficiency of competing debiasing techniques without sacrificing the utility of the plug-in approach.
Federated Learning (FL) has been recently receiving increasing consideration from the cybersecurity community as a way to collaboratively train deep learning models with distributed profiles of cyber threats, with no disclosure of training data. Nevertheless, the adoption of FL in cybersecurity is still in its infancy, and a range of practical aspects have not been properly addressed yet. Indeed, the Federated Averaging algorithm at the core of the FL concept requires the availability of test data to control the FL process. Although this might be feasible in some domains, test network traffic of newly discovered attacks cannot be always shared without disclosing sensitive information. In this paper, we address the convergence of the FL process in dynamic cybersecurity scenarios, where the trained model must be frequently updated with new recent attack profiles to empower all members of the federation with the latest detection features. To this aim, we propose FLAD (adaptive Federated Learning Approach to DDoS attack detection), an FL solution for cybersecurity applications based on an adaptive mechanism that orchestrates the FL process by dynamically assigning more computation to those members whose attacks profiles are harder to learn, without the need of sharing any test data to monitor the performance of the trained model. Using a recent dataset of DDoS attacks, we demonstrate that FLAD outperforms state-of-the-art FL algorithms in terms of convergence time and accuracy across a range of unbalanced datasets of heterogeneous DDoS attacks. We also show the robustness of our approach in a realistic scenario, where we retrain the deep learning model multiple times to introduce the profiles of new attacks on a pre-trained model.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Co-saliency detection aims to discover the common and salient foregrounds from a group of relevant images. For this task, we present a novel adaptive graph convolutional network with attention graph clustering (GCAGC). Three major contributions have been made, and are experimentally shown to have substantial practical merits. First, we propose a graph convolutional network design to extract information cues to characterize the intra- and interimage correspondence. Second, we develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion. Third, we present a unified framework with encoder-decoder structure to jointly train and optimize the graph convolutional network, attention graph cluster, and co-saliency detection decoder in an end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method obtains significant improvements over the state-of-the-arts on most of them.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.