亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work focuses on developing a data-driven framework using Koopman operator theory for system identification and linearization of nonlinear systems for control. Our proposed method presents a deep learning framework with recursive learning. The resulting linear system is controlled using a linear quadratic control. An illustrative example using a pendulum system is presented with simulations on noisy data. We show that our proposed method is trained more efficiently and is more accurate than an autoencoder baseline.

相關內容

This work introduces a novel task, location-aware visual question generation (LocaVQG), which aims to generate engaging questions from data relevant to a particular geographical location. Specifically, we represent such location-aware information with surrounding images and a GPS coordinate. To tackle this task, we present a dataset generation pipeline that leverages GPT-4 to produce diverse and sophisticated questions. Then, we aim to learn a lightweight model that can address the LocaVQG task and fit on an edge device, such as a mobile phone. To this end, we propose a method which can reliably generate engaging questions from location-aware information. Our proposed method outperforms baselines regarding human evaluation (e.g., engagement, grounding, coherence) and automatic evaluation metrics (e.g., BERTScore, ROUGE-2). Moreover, we conduct extensive ablation studies to justify our proposed techniques for both generating the dataset and solving the task.

We settle the parameterized complexities of several variants of independent set reconfiguration and dominating set reconfiguration, parameterized by the number of tokens. We show that both problems are XL-complete when there is no limit on the number of moves, XNL-complete when a maximum length $\ell$ for the sequence is given in binary in the input, and XNLP-complete when $\ell$ is given in unary. The problems were known to be $\mathrm{W}[1]$- and $\mathrm{W}[2]$-hard respectively when $\ell$ is also a parameter. We complete the picture by showing membership in those classes. Moreover, we show that for all the variants that we consider, token sliding and token jumping are equivalent under pl-reductions. We introduce partitioned variants of token jumping and token sliding, and give pl-reductions between the four variants that have precise control over the number of tokens and the length of the reconfiguration sequence.

Gradient-based first-order convex optimization algorithms find widespread applicability in a variety of domains, including machine learning tasks. Motivated by the recent advances in fixed-time stability theory of continuous-time dynamical systems, we introduce a generalized framework for designing accelerated optimization algorithms with strongest convergence guarantees that further extend to a subclass of non-convex functions. In particular, we introduce the GenFlow algorithm and its momentum variant that provably converge to the optimal solution of objective functions satisfying the Polyak-{\L}ojasiewicz (PL) inequality in a fixed time. Moreover, for functions that admit non-degenerate saddle-points, we show that for the proposed GenFlow algorithm, the time required to evade these saddle-points is uniformly bounded for all initial conditions. Finally, for strongly convex-strongly concave minimax problems whose optimal solution is a saddle point, a similar scheme is shown to arrive at the optimal solution again in a fixed time. The superior convergence properties of our algorithm are validated experimentally on a variety of benchmark datasets.

We introduce fluctuating hydrodynamics approaches on surfaces for capturing the drift-diffusion dynamics of particles and microstructures immersed within curved fluid interfaces of spherical shape. We take into account the interfacial hydrodynamic coupling, traction coupling with the surrounding bulk fluid, and thermal fluctuations. For fluid-structure interactions, we introduce Immersed Boundary Methods (IBM) and related Stochastic Eulerian-Lagrangian Methods (SELM) for curved surfaces. We use these approaches to investigate the statistics of surface fluctuating hydrodynamics and microstructures. For velocity autocorrelations, we find characteristic power-law scalings $\tau^{-1}$, $\tau^{-2}$, and plateaus can emerge. This depends on the physical regime associated with the geometry, surface viscosity, and bulk viscosity. This differs from the characteristic $\tau^{-3/2}$ scaling for bulk three dimensional fluids. We develop theory explaining these observed power-laws associated with time-scales for dissipation within the fluid interface and coupling to the surrounding fluid. We then use our introduced methods to investigate a few example systems and roles of hydrodynamic coupling and thermal fluctuations including for the kinetics of passive particles and active microswimmers in curved fluid interfaces.

For multi-transmission rate environments, access point (AP) connection methods have been proposed for maximizing system throughput, which is the throughput of an entire system, on the basis of the cooperative behavior of users. These methods derive optimal positions for the cooperative behavior of users, which means that new users move to improve the system throughput when connecting to an AP. However, the conventional method only considers the transmission rate of new users and does not consider existing users, even though it is necessary to consider the transmission rate of all users to improve system throughput. In addition, these method do not take into account the frequency of interference between users. In this paper, we propose an AP connection method which maximizes system throughput by considering the interference between users and the initial position of all users. In addition, our proposed method can improve system throughput by about 6% at most compared to conventional methods.

We propose a dependence-aware predictive modeling framework for multivariate risks stemmed from an insurance contract with bundling features - an important type of policy increasingly offered by major insurance companies. The bundling feature naturally leads to longitudinal measurements of multiple insurance risks, and correct pricing and management of such risks is of fundamental interest to financial stability of the macroeconomy. We build a novel predictive model that fully captures the dependence among the multivariate repeated risk measurements. Specifically, the longitudinal measurement of each individual risk is first modeled using pair copula construction with a D-vine structure, and the multiple D-vines are then integrated by a flexible copula. The proposed model provides a unified modeling framework for multivariate longitudinal data that can accommodate different scales of measurements, including continuous, discrete, and mixed observations, and thus can be potentially useful for various economic studies. A computationally efficient sequential method is proposed for model estimation and inference, and its performance is investigated both theoretically and via simulation studies. In the application, we examine multivariate bundled risks in multi-peril property insurance using proprietary data from a commercial property insurance provider. The proposed model is found to provide improved decision making for several key insurance operations. For underwriting, we show that the experience rate priced by the proposed model leads to a 9% lift in the insurer's net revenue. For reinsurance, we show that the insurer underestimates the risk of the retained insurance portfolio by 10% when ignoring the dependence among bundled insurance risks.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司