亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Local-first software manages and processes private data locally while still enabling collaboration between multiple parties connected via partially unreliable networks. Such software typically involves interactions with users and the execution environment (the outside world). The unpredictability of such interactions paired with their decentralized nature make reasoning about the correctness of local-first software a challenging endeavor. Yet, existing solutions to develop local-first software do not provide support for automated safety guarantees and instead expect developers to reason about concurrent interactions in an environment with unreliable network conditions. We propose LoRe, a programming model and compiler that automatically verifies developer-supplied safety properties for local-first applications. LoRe combines the declarative data flow of reactive programming with static analysis and verification techniques to precisely determine concurrent interactions that violate safety invariants and to selectively employ strong consistency through coordination where required. We propose a formalized proof principle and demonstrate how to automate the process in a prototype implementation that outputs verified executable code. Our evaluation shows that LoRe simplifies the development of safe local-first software when compared to state-of-the-art approaches and that verification times are acceptable.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · INFORMS · 覆蓋 · Networking · 可約的 ·
2023 年 12 月 6 日

Deploying unmanned aerial vehicle (UAV) networks to provide coverage for outdoor users has attracted great attention during the last decade. However, outdoor coverage is challenging due to the high mobility of crowds and the diverse terrain configurations causing building blockage. Most studies use stochastic channel models to characterize the impact of building blockage on user performance and do not take into account terrain information. On the other hand, real-time search methods use terrain information, but they are only practical when a single UAV serves a single user.In this paper, we put forward two methods to avoid building blockage in a multi-user system by collecting prior terrain information and using real-time search.We proposed four algorithms related to the combinations of the above methods and their performances are evaluated and compared in different scenarios.By adjusting the height of the UAV based on terrain information collected before networking, the performance is significantly enhanced compared to the one when no terrain information is available.The algorithm based on real-time search further improves the coverage performance by avoiding the shadow of buildings. During the execution of the real-time search algorithm, the search distance is reduced using the collected terrain information.

Privacy-preserving inference in edge computing paradigms encourages the users of machine-learning services to locally run a model on their private input, for a target task, and only share the model's outputs with the server. We study how a vicious server can reconstruct the input data by observing only the model's outputs, while keeping the target accuracy very close to that of a honest server: by jointly training a target model (to run at users' side) and an attack model for data reconstruction (to secretly use at server's side). We present a new measure to assess the reconstruction risk in edge inference. Our evaluations on six benchmark datasets demonstrate that the model's input can be approximately reconstructed from the outputs of a single target inference. We propose a potential defense mechanism that helps to distinguish vicious versus honest classifiers at inference time. We discuss open challenges and directions for future studies and release our code as a benchmark for future work.

In large-scale datacenters, memory failure is a common cause of server crashes, with uncorrectable errors (UEs) being a major indicator of Dual Inline Memory Module (DIMM) defects. Existing approaches primarily focus on predicting UEs using correctable errors (CEs), without fully considering the information provided by error bits. However, error bit patterns have a strong correlation with the occurrence of uncorrectable errors (UEs). In this paper, we present a comprehensive study on the correlation between CEs and UEs, specifically emphasizing the importance of spatio-temporal error bit information. Our analysis reveals a strong correlation between spatio-temporal error bits and UE occurrence. Through evaluations using real-world datasets, we demonstrate that our approach significantly improves prediction performance by 15% in F1-score compared to the state-of-the-art algorithms. Overall, our approach effectively reduces the number of virtual machine interruptions caused by UEs by approximately 59%.

Privacy-preserving data release algorithms have gained increasing attention for their ability to protect user privacy while enabling downstream machine learning tasks. However, the utility of current popular algorithms is not always satisfactory. Mixup of raw data provides a new way of data augmentation, which can help improve utility. However, its performance drastically deteriorates when differential privacy (DP) noise is added. To address this issue, this paper draws inspiration from the recently observed Neural Collapse (NC) phenomenon, which states that the last layer features of a neural network concentrate on the vertices of a simplex as Equiangular Tight Frame (ETF). We propose a scheme to mixup the Neural Collapse features to exploit the ETF simplex structure and release noisy mixed features to enhance the utility of the released data. By using Gaussian Differential Privacy (GDP), we obtain an asymptotic rate for the optimal mixup degree. To further enhance the utility and address the label collapse issue when the mixup degree is large, we propose a Hierarchical sampling method to stratify the mixup samples on a small number of classes. This method remarkably improves utility when the number of classes is large. Extensive experiments demonstrate the effectiveness of our proposed method in protecting against attacks and improving utility. In particular, our approach shows significantly improved utility compared to directly training classification networks with DPSGD on CIFAR100 and MiniImagenet datasets, highlighting the benefits of using privacy-preserving data release. We release reproducible code in //github.com/Lidonghao1996/NeuroMixGDP.

Post-processing mitigation techniques for group fairness generally adjust the decision threshold of a base model in order to improve fairness. Methods in this family exhibit several advantages that make them appealing in practice: post-processing requires no access to the model training pipeline, is agnostic to the base model architecture, and offers a reduced computation cost compared to in-processing. Despite these benefits, existing methods face other challenges that limit their applicability: they require knowledge of the sensitive attributes at inference time and are oftentimes outperformed by in-processing. In this paper, we propose a general framework to transform any in-processing method with a penalized objective into a post-processing procedure. The resulting method is specifically designed to overcome the aforementioned shortcomings of prior post-processing approaches. Furthermore, we show theoretically and through extensive experiments on real-world data that the resulting post-processing method matches or even surpasses the fairness-error trade-off offered by the in-processing counterpart.

The surge in real-time data collection across various industries has underscored the need for advanced anomaly detection in both univariate and multivariate time series data. Traditional methods, while comprehensive, often struggle to capture the complex interdependencies in such data. This paper introduces TransNAS-TSAD, a novel framework that synergizes transformer architecture with neural architecture search (NAS), enhanced through NSGA-II algorithm optimization. This innovative approach effectively tackles the complexities of both univariate and multivariate time series, balancing computational efficiency with detection accuracy. Our evaluation reveals that TransNAS-TSAD surpasses conventional anomaly detection models, demonstrating marked improvements in diverse data scenarios. We also propose the Efficiency-Accuracy-Complexity Score (EACS) as a new metric for assessing model performance, emphasizing the crucial balance between accuracy and computational resources. TransNAS-TSAD sets a new benchmark in time series anomaly detection, offering a versatile, efficient solution for complex real-world applications. This research paves the way for future developments in the field, highlighting its potential in a wide range of industry applications.

The current fabrication and assembly of fluidic circuits for soft robots relies heavily on manual processes; as the complexity of fluidic circuits increases, manual assembly becomes increasingly arduous, error-prone, and timeconsuming. We introduce a software tool that generates printable fluidic networks automatically. We provide a library of fluidic logic elements that are easily 3D printed from thermoplastic polyurethanes using Fused Deposition Modeling only. Our software tool and component library allow the development of arbitrary soft digital circuits. We demonstrate a variable frequency ring oscillator and a full adder. The simplicity of our approach using FDM printers only, democratizes fluidic circuit implementation beyond specialized laboratories. Our software is available on GitHub (//github.com/roboticmaterialsgroup/FluidLogic).

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司