亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the impressive performance achieved by data-fusion networks with duplex encoders for visual semantic segmentation, they become ineffective when spatial geometric data are not available. Implicitly infusing the spatial geometric prior knowledge acquired by a duplex-encoder teacher model into a single-encoder student model is a practical, albeit less explored research avenue. This paper delves into this topic and resorts to knowledge distillation approaches to address this problem. We introduce the Learning to Infuse "X" (LIX) framework, with novel contributions in both logit distillation and feature distillation aspects. We present a mathematical proof that underscores the limitation of using a single fixed weight in decoupled knowledge distillation and introduce a logit-wise dynamic weight controller as a solution to this issue. Furthermore, we develop an adaptively-recalibrated feature distillation algorithm, including two technical novelties: feature recalibration via kernel regression and in-depth feature consistency quantification via centered kernel alignment. Extensive experiments conducted with intermediate-fusion and late-fusion networks across various public datasets provide both quantitative and qualitative evaluations, demonstrating the superior performance of our LIX framework when compared to other state-of-the-art approaches.

相關內容

通過學(xue)習、實踐或探索所(suo)獲得的認識、判斷或技能。

We introduce Blink, a new benchmark for multimodal language models (LLMs) that focuses on core visual perception abilities not found in other evaluations. Most of the Blink tasks can be solved by humans "within a blink" (e.g., relative depth estimation, visual correspondence, forensics detection, and multi-view reasoning). However, we find these perception-demanding tasks cast significant challenges for current multimodal LLMs because they resist mediation through natural language. Blink reformats 14 classic computer vision tasks into 3,807 multiple-choice questions, paired with single or multiple images and visual prompting. While humans get 95.70% accuracy on average, Blink is surprisingly challenging for existing multimodal LLMs: even the best-performing GPT-4V and Gemini achieve accuracies of 51.26% and 45.72%, only 13.17% and 7.63% higher than random guessing, indicating that such perception abilities have not "emerged" yet in recent multimodal LLMs. Our analysis also highlights that specialist CV models could solve these problems much better, suggesting potential pathways for future improvements. We believe Blink will stimulate the community to help multimodal LLMs catch up with human-level visual perception.

With the continuous advancement of vision language models (VLMs) technology, remarkable research achievements have emerged in the dermatology field, the fourth most prevalent human disease category. However, despite these advancements, VLM still faces "hallucination" in dermatological diagnosis, and due to the inherent complexity of dermatological conditions, existing tools offer relatively limited support for user comprehension. We propose SkinGEN, a diagnosis-to-generation framework that leverages the stable diffusion (SD) method to generate reference demonstrations from diagnosis results provided by VLM, thereby enhancing the visual explainability for users. Through extensive experiments with Low-Rank Adaptation (LoRA), we identify optimal strategies for skin condition image generation. We conduct a user study with 32 participants evaluating both the system performance and explainability. Results demonstrate that SkinGEN significantly improves users' comprehension of VLM predictions and fosters increased trust in the diagnostic process. This work paves the way for more transparent and user-centric VLM applications in dermatology and beyond.

Driven by powerful image diffusion models, recent research has achieved the automatic creation of 3D objects from textual or visual guidance. By performing score distillation sampling (SDS) iteratively across different views, these methods succeed in lifting 2D generative prior to the 3D space. However, such a 2D generative image prior bakes the effect of illumination and shadow into the texture. As a result, material maps optimized by SDS inevitably involve spurious correlated components. The absence of precise material definition makes it infeasible to relight the generated assets reasonably in novel scenes, which limits their application in downstream scenarios. In contrast, humans can effortlessly circumvent this ambiguity by deducing the material of the object from its appearance and semantics. Motivated by this insight, we propose MaterialSeg3D, a 3D asset material generation framework to infer underlying material from the 2D semantic prior. Based on such a prior model, we devise a mechanism to parse material in 3D space. We maintain a UV stack, each map of which is unprojected from a specific viewpoint. After traversing all viewpoints, we fuse the stack through a weighted voting scheme and then employ region unification to ensure the coherence of the object parts. To fuel the learning of semantics prior, we collect a material dataset, named Materialized Individual Objects (MIO), which features abundant images, diverse categories, and accurate annotations. Extensive quantitative and qualitative experiments demonstrate the effectiveness of our method.

Connected and autonomous driving is developing rapidly in recent years. However, current autonomous driving systems, which are primarily based on data-driven approaches, exhibit deficiencies in interpretability, generalization, and continuing learning capabilities. In addition, the single-vehicle autonomous driving systems lack of the ability of collaboration and negotiation with other vehicles, which is crucial for the safety and efficiency of autonomous driving systems. In order to address these issues, we leverage large language models (LLMs) to develop a novel framework, AgentsCoDriver, to enable multiple vehicles to conduct collaborative driving. AgentsCoDriver consists of five modules: observation module, reasoning engine, cognitive memory module, reinforcement reflection module, and communication module. It can accumulate knowledge, lessons, and experiences over time by continuously interacting with the environment, thereby making itself capable of lifelong learning. In addition, by leveraging the communication module, different agents can exchange information and realize negotiation and collaboration in complex traffic environments. Extensive experiments are conducted and show the superiority of AgentsCoDriver.

Blockchain technology has become a trusted method for establishing secure and transparent transactions through a distributed, encrypted network. The operation of blockchain is governed by consensus algorithms, among which Proof of Stake (PoS) is popular yet has its drawbacks, notably the potential for centralising power in nodes with larger stakes or higher rewards. Fuzzychain, our proposed solution, introduces the use of fuzzy sets to define stake semantics, promoting decentralised and distributed processing control. This system selects validators based on their degree of membership to the stake fuzzy sets rather than just the size of their stakes. As a pioneer proposal in applying fuzzy sets to blockchain, Fuzzychain aims to rectify PoS's limitations. Our results indicate that Fuzzychain not only matches PoS in functionality but also ensures a fairer distribution of stakes among validators, leading to more inclusive validator selection and a better-distributed network.

Data profilers play a crucial role in the preprocessing phase of data analysis by identifying quality issues such as missing, extreme, or erroneous values. Traditionally, profilers have relied solely on statistical methods, which lead to high false positives and false negatives. For example, they may incorrectly flag missing values where such absences are expected and normal based on the data's semantic context. To address these, we introduce Cocoon, a data profiling system that integrates LLMs to imbue statistical profiling with semantics. Cocoon enhances traditional profiling methods by adding a three-step process: Semantic Context, Semantic Profile, and Semantic Review. Our user studies show that Cocoon is highly effective at accurately discerning whether anomalies are genuine errors requiring correction or acceptable variations based on the semantics for real-world datasets.

Tensor computations, with matrix multiplication being the primary operation, serve as the fundamental basis for data analysis, physics, machine learning, and deep learning. As the scale and complexity of data continue to grow rapidly, the demand for tensor computations has also increased significantly. To meet this demand, several research institutions have started developing dedicated hardware for tensor computations. To further improve the computational performance of tensor process units, we have reexamined the issue of computation reuse that was previously overlooked in existing architectures. As a result, we propose a novel EN-TensorCore architecture that can significantly reduce chip area and power consumption. Furthermore, our method is compatible with existing tensor processing architectures. We evaluated our method on prevalent microarchitectures, the results demonstrate an average improvement in area efficiency of 8.7\%, 12.2\%, and 11.0\% for tensor computing units at computational scales of 256 GOPS, 1 TOPS, and 4 TOPS, respectively. Similarly, there were energy efficiency enhancements of 13.0\%, 17.5\%, and 15.5\%.

Although Transformer-based methods have significantly improved state-of-the-art results for long-term series forecasting, they are not only computationally expensive but more importantly, are unable to capture the global view of time series (e.g. overall trend). To address these problems, we propose to combine Transformer with the seasonal-trend decomposition method, in which the decomposition method captures the global profile of time series while Transformers capture more detailed structures. To further enhance the performance of Transformer for long-term prediction, we exploit the fact that most time series tend to have a sparse representation in well-known basis such as Fourier transform, and develop a frequency enhanced Transformer. Besides being more effective, the proposed method, termed as Frequency Enhanced Decomposed Transformer ({\bf FEDformer}), is more efficient than standard Transformer with a linear complexity to the sequence length. Our empirical studies with six benchmark datasets show that compared with state-of-the-art methods, FEDformer can reduce prediction error by $14.8\%$ and $22.6\%$ for multivariate and univariate time series, respectively. the code will be released soon.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.

北京阿比特科技有限公司