亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stochastic collocation (SC) is a well-known non-intrusive method of constructing surrogate models for uncertainty quantification. In dynamical systems, SC is especially suited for full-field uncertainty propagation that characterizes the distributions of the high-dimensional primary solution fields of a model with stochastic input parameters. However, due to the highly nonlinear nature of the parameter-to-solution map in even the simplest dynamical systems, the constructed SC surrogates are often inaccurate. This work presents an alternative approach, where we apply the SC approximation over the dynamics of the model, rather than the solution. By combining the data-driven sparse identification of nonlinear dynamics (SINDy) framework with SC, we construct dynamics surrogates and integrate them through time to construct the surrogate solutions. We demonstrate that the SC-over-dynamics framework leads to smaller errors, both in terms of the approximated system trajectories as well as the model state distributions, when compared against full-field SC applied to the solutions directly. We present numerical evidence of this improvement using three test problems: a chaotic ordinary differential equation, and two partial differential equations from solid mechanics.

相關內容

SC:International Conference for High Performance Computing, Networking, Storage, and Analysis。 Explanation:高性能計算、網絡、存儲和分析國際會議。 Publisher:IEEE。 SIT:

We propose a unified class of generalized structural equation models (GSEMs) with data of mixed types in mediation analysis, including continuous, categorical, and count variables. Such models extend substantially the classical linear structural equation model to accommodate many data types arising from the application of mediation analysis. Invoking the hierarchical modeling approach, we specify GSEMs by a copula joint distribution of outcome variable, mediator and exposure variable, in which marginal distributions are built upon generalized linear models (GLMs) with confounding factors. We discuss the identifiability conditions for the causal mediation effects in the counterfactual paradigm as well as the issue of mediation leakage, and develop an asymptotically efficient profile maximum likelihood estimation and inference for two key mediation estimands, natural direct effect and natural indirect effect, in different scenarios of mixed data types. The proposed new methodology is illustrated by a motivating epidemiological study that aims to investigate whether the tempo of reaching infancy BMI peak (delay or on time), an important early life growth milestone, may mediate the association between prenatal exposure to phthalates and pubertal health outcomes.

Large Language Models (LLMs) represent formidable tools for sequence modeling, boasting an innate capacity for general pattern recognition. Nevertheless, their broader spatial reasoning capabilities, especially applied to numerical trajectory data, remain insufficiently explored. In this paper, we investigate the out-of-the-box performance of ChatGPT-3.5, ChatGPT-4 and Llama 2 7B models when confronted with 3D robotic trajectory data from the CALVIN baseline and associated tasks, including 2D directional and shape labeling. Additionally, we introduce a novel prefix-based prompting mechanism, which yields a 33% improvement on the 3D trajectory data and an increase of up to 10% on SpartQA tasks over zero-shot prompting (with gains for other prompting types as well). The experimentation with 3D trajectory data offers an intriguing glimpse into the manner in which LLMs engage with numerical and spatial information, thus laying a solid foundation for the identification of target areas for future enhancements.

Traditional partial differential equation (PDE) solvers can be computationally expensive, which motivates the development of faster methods, such as reduced-order-models (ROMs). We present GPLaSDI, a hybrid deep-learning and Bayesian ROM. GPLaSDI trains an autoencoder on full-order-model (FOM) data and simultaneously learns simpler equations governing the latent space. These equations are interpolated with Gaussian Processes, allowing for uncertainty quantification and active learning, even with limited access to the FOM solver. Our framework is able to achieve up to 100,000 times speed-up and less than 7% relative error on fluid mechanics problems.

In the realm of interpretability and out-of-distribution generalisation, the identifiability of latent variable models has emerged as a captivating field of inquiry. In this work, we delve into the identifiability of Switching Dynamical Systems, taking an initial stride toward extending identifiability analysis to sequential latent variable models. We first prove the identifiability of Markov Switching Models, which commonly serve as the prior distribution for the continuous latent variables in Switching Dynamical Systems. We present identification conditions for first-order Markov dependency structures, whose transition distribution is parametrised via non-linear Gaussians. We then establish the identifiability of the latent variables and non-linear mappings in Switching Dynamical Systems up to affine transformations, by leveraging identifiability analysis techniques from identifiable deep latent variable models. We finally develop estimation algorithms for identifiable Switching Dynamical Systems. Throughout empirical studies, we demonstrate the practicality of identifiable Switching Dynamical Systems for segmenting high-dimensional time series such as videos, and showcase the use of identifiable Markov Switching Models for regime-dependent causal discovery in climate data.

Modeling the ratio of two dependent components as a function of covariates is a frequently pursued objective in observational research. Despite the high relevance of this topic in medical studies, where biomarker ratios are often used as surrogate endpoints for specific diseases, existing models are based on oversimplified assumptions, assuming e.g.\@ independence or strictly positive associations between the components. In this paper, we close this gap in the literature and propose a regression model where the marginal distributions of the two components are linked by Frank copula. A key feature of our model is that it allows for both positive and negative correlations between the components, with one of the model parameters being directly interpretable in terms of Kendall's rank correlation coefficient. We study our method theoretically, evaluate finite sample properties in a simulation study and demonstrate its efficacy in an application to diagnosis of Alzheimer's disease via ratios of amyloid-beta and total tau protein biomarkers.

Human activity recognition (HAR) is a key challenge in pervasive computing and its solutions have been presented based on various disciplines. Specifically, for HAR in a smart space without privacy and accessibility issues, data streams generated by deployed pervasive sensors are leveraged. In this paper, we focus on a group activity by which a group of users perform a collaborative task without user identification and propose an efficient group activity recognition scheme which extracts causality patterns from pervasive sensor event sequences generated by a group of users to support as good recognition accuracy as the state-of-the-art graphical model. To filter out irrelevant noise events from a given data stream, a set of rules is leveraged to highlight causally related events. Then, a pattern-tree algorithm extracts frequent causal patterns by means of a growing tree structure. Based on the extracted patterns, a weighted sum-based pattern matching algorithm computes the likelihoods of stored group activities to the given test event sequence by means of matched event pattern counts for group activity recognition. We evaluate the proposed scheme using the data collected from our testbed and CASAS datasets where users perform their tasks on a daily basis and validate its effectiveness in a real environment. Experiment results show that the proposed scheme performs higher recognition accuracy and with a small amount of runtime overhead than the existing schemes.

Many important tasks of large-scale recommender systems can be naturally cast as testing multiple linear forms for noisy matrix completion. These problems, however, present unique challenges because of the subtle bias-and-variance tradeoff of and an intricate dependence among the estimated entries induced by the low-rank structure. In this paper, we develop a general approach to overcome these difficulties by introducing new statistics for individual tests with sharp asymptotics both marginally and jointly, and utilizing them to control the false discovery rate (FDR) via a data splitting and symmetric aggregation scheme. We show that valid FDR control can be achieved with guaranteed power under nearly optimal sample size requirements using the proposed methodology. Extensive numerical simulations and real data examples are also presented to further illustrate its practical merits.

Mixed linear regression (MLR) is a powerful model for characterizing nonlinear relationships by utilizing a mixture of linear regression sub-models. The identification of MLR is a fundamental problem, where most of the existing results focus on offline algorithms, rely on independent and identically distributed (i.i.d) data assumptions, and provide local convergence results only. This paper investigates the online identification and data clustering problems for two basic classes of MLRs, by introducing two corresponding new online identification algorithms based on the expectation-maximization (EM) principle. It is shown that both algorithms will converge globally without resorting to the traditional i.i.d data assumptions. The main challenge in our investigation lies in the fact that the gradient of the maximum likelihood function does not have a unique zero, and a key step in our analysis is to establish the stability of the corresponding differential equation in order to apply the celebrated Ljung's ODE method. It is also shown that the within-cluster error and the probability that the new data is categorized into the correct cluster are asymptotically the same as those in the case of known parameters. Finally, numerical simulations are provided to verify the effectiveness of our online algorithms.

Active subspace (AS) methods are a valuable tool for understanding the relationship between the inputs and outputs of a Physics simulation. In this paper, an elegant generalization of the traditional ASM is developed to assess the co-activity of two computer models. This generalization, which we refer to as a Co-Active Subspace (C-AS) Method, allows for the joint analysis of two or more computer models allowing for thorough exploration of the alignment (or non-alignment) of the respective gradient spaces. We define co-active directions, co-sensitivity indices, and a scalar ``concordance" metric (and complementary ``discordance" pseudo-metric) and we demonstrate that these are powerful tools for understanding the behavior of a class of computer models, especially when used to supplement traditional AS analysis. Details for efficient estimation of the C-AS and an accompanying R package (github.com/knrumsey/concordance) are provided. Practical application is demonstrated through analyzing a set of simulated rate stick experiments for PBX 9501, a high explosive, offering insights into complex model dynamics.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司