亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work aims to promote Chinese opera research in both musical and speech domains, with a primary focus on overcoming the data limitations. We introduce KunquDB, a relatively large-scale, well-annotated audio-visual dataset comprising 339 speakers and 128 hours of content. Originating from the Kunqu Opera Art Canon (Kunqu yishu dadian), KunquDB is meticulously structured by dialogue lines, providing explicit annotations including character names, speaker names, gender information, vocal manner classifications, and accompanied by preliminary text transcriptions. KunquDB provides a versatile foundation for role-centric acoustic studies and advancements in speech-related research, including Automatic Speaker Verification (ASV). Beyond enriching opera research, this dataset bridges the gap between artistic expression and technological innovation. Pioneering the exploration of ASV in Chinese opera, we construct four test trials considering two distinct vocal manners in opera voices: stage speech (ST) and singing (S). Implementing domain adaptation methods effectively mitigates domain mismatches induced by these vocal manner variations while there is still room for further improvement as a benchmark.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Process mining offers powerful techniques for discovering, analyzing, and enhancing real-world business processes. In this context, Petri nets provide an expressive means of modeling process behavior. However, directly analyzing and comparing intricate Petri net presents challenges. This study introduces PetriNet2Vec, a novel unsupervised methodology based on Natural Language Processing concepts inspired by Doc2Vec and designed to facilitate the effective comparison, clustering, and classification of process models represented as embedding vectors. These embedding vectors allow us to quantify similarities and relationships between different process models. Our methodology was experimentally validated using the PDC Dataset, featuring 96 diverse Petri net models. We performed cluster analysis, created UMAP visualizations, and trained a decision tree to provide compelling evidence for the capability of PetriNet2Vec to discern meaningful patterns and relationships among process models and their constituent tasks. Through a series of experiments, we demonstrated that PetriNet2Vec was capable of learning the structure of Petri nets, as well as the main properties used to simulate the process models of our dataset. Furthermore, our results showcase the utility of the learned embeddings in two crucial downstream tasks within process mining enhancement: process classification and process retrieval.

The complexity of visual stimuli plays an important role in many cognitive phenomena, including attention, engagement, memorability, time perception and aesthetic evaluation. Despite its importance, complexity is poorly understood and ironically, previous models of image complexity have been quite complex. There have been many attempts to find handcrafted features that explain complexity, but these features are usually dataset specific, and hence fail to generalise. On the other hand, more recent work has employed deep neural networks to predict complexity, but these models remain difficult to interpret, and do not guide a theoretical understanding of the problem. Here we propose to model complexity using segment-based representations of images. We use state-of-the-art segmentation models, SAM and FC-CLIP, to quantify the number of segments at multiple granularities, and the number of classes in an image respectively. We find that complexity is well-explained by a simple linear model with these two features across six diverse image-sets of naturalistic scene and art images. This suggests that the complexity of images can be surprisingly simple.

We consider modal logic extended with the well-known temporal operator `eventually' and provide a cut-elimination procedure for a cyclic sequent calculus that captures this fragment. The work showcases an adaptation of the reductive cut-elimination method to cyclic calculi. Notably, the proposed algorithm applies to a cyclic proof and directly outputs a cyclic cut-free proof without appealing to intermediate machinery for regularising the end proof.

Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.

While most research on controllable text generation has focused on steering base Language Models, the emerging instruction-tuning and prompting paradigm offers an alternate approach to controllability. We compile and release ConGenBench, a testbed of 17 different controllable generation tasks, using a subset of it to benchmark the performance of 9 different baselines and methods on Instruction-tuned Language Models. To our surprise, we find that prompting-based approaches outperform controllable text generation methods on most datasets and tasks, highlighting a need for research on controllable text generation with Instruction-tuned Language Models in specific. Prompt-based approaches match human performance on most stylistic tasks while lagging on structural tasks, foregrounding a need to study more varied constraints and more challenging stylistic tasks. To facilitate such research, we provide an algorithm that uses only a task dataset and a Large Language Model with in-context capabilities to automatically generate a constraint dataset. This method eliminates the fields dependence on pre-curated constraint datasets, hence vastly expanding the range of constraints that can be studied in the future.

In the context of machine learning for graphs, many researchers have empirically observed that Deep Graph Networks (DGNs) perform favourably on node classification tasks when the graph structure is homophilic (\ie adjacent nodes are similar). In this paper, we introduce Lying-GCN, a new DGN inspired by opinion dynamics that can adaptively work in both the heterophilic and the homophilic setting. At each layer, each agent (node) shares its own opinions (node embeddings) with its neighbours. Instead of sharing its opinion directly as in GCN, we introduce a mechanism which allows agents to lie. Such a mechanism is adaptive, thus the agents learn how and when to lie according to the task that should be solved. We provide a characterisation of our proposal in terms of dynamical systems, by studying the spectral property of the coefficient matrix of the system. While the steady state of the system collapses to zero, we believe the lying mechanism is still usable to solve node classification tasks. We empirically prove our belief on both synthetic and real-world datasets, by showing that the lying mechanism allows to increase the performances in the heterophilic setting without harming the results in the homophilic one.

This paper explores the intricate relationship between capitalism, racial injustice, and artificial intelligence (AI), arguing that AI acts as a contemporary vehicle for age-old forms of exploitation. By linking historical patterns of racial and economic oppression with current AI practices, this study illustrates how modern technology perpetuates and deepens societal inequalities. It specifically examines how AI is implicated in the exploitation of marginalized communities through underpaid labor in the gig economy, the perpetuation of biases in algorithmic decision-making, and the reinforcement of systemic barriers that prevent these groups from benefiting equitably from technological advances. Furthermore, the paper discusses the role of AI in extending and intensifying the social, economic, and psychological burdens faced by these communities, highlighting the problematic use of AI in surveillance, law enforcement, and mental health contexts. The analysis concludes with a call for transformative changes in how AI is developed and deployed. Advocating for a reevaluation of the values driving AI innovation, the paper promotes an approach that integrates social justice and equity into the core of technological design and policy. This shift is crucial for ensuring that AI serves as a tool for societal improvement, fostering empowerment and healing rather than deepening existing divides.

In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司