亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Functional constrained optimization is becoming more and more important in machine learning and operations research. Such problems have potential applications in risk-averse machine learning, semisupervised learning, and robust optimization among others. In this paper, we first present a novel Constraint Extrapolation (ConEx) method for solving convex functional constrained problems, which utilizes linear approximations of the constraint functions to define the extrapolation (or acceleration) step. We show that this method is a unified algorithm that achieves the best-known rate of convergence for solving different functional constrained convex composite problems, including convex or strongly convex, and smooth or nonsmooth problems with a stochastic objective and/or stochastic constraints. Many of these rates of convergence were in fact obtained for the first time in the literature. In addition, ConEx is a single-loop algorithm that does not involve any penalty subproblems. Contrary to existing primal-dual methods, it does not require the projection of Lagrangian multipliers into a (possibly unknown) bounded set. Second, for nonconvex functional constrained problems, we introduce a new proximal point method that transforms the initial nonconvex problem into a sequence of convex problems by adding quadratic terms to both the objective and constraints. Under a certain MFCQ-type assumption, we establish the convergence and rate of convergence of this method to KKT points when the convex subproblems are solved exactly or inexactly. For large-scale and stochastic problems, we present a more practical proximal point method in which the approximate solutions of the subproblems are computed by the aforementioned ConEx method. To the best of our knowledge, most of these convergence and complexity results of the proximal point method for nonconvex problems also seem to be new in the literature.

相關內容

We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as the Subsampled Newton and Newton Sketch, which can efficiently construct stochastic Hessian estimates for many tasks. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme enjoys local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the iteration, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still enjoys a superlinear convergence~rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.

Escaping from saddle points and finding local minimum is a central problem in nonconvex optimization. Perturbed gradient methods are perhaps the simplest approach for this problem. However, to find $(\epsilon, \sqrt{\epsilon})$-approximate local minima, the existing best stochastic gradient complexity for this type of algorithms is $\tilde O(\epsilon^{-3.5})$, which is not optimal. In this paper, we propose LENA (Last stEp shriNkAge), a faster perturbed stochastic gradient framework for finding local minima. We show that LENA with stochastic gradient estimators such as SARAH/SPIDER and STORM can find $(\epsilon, \epsilon_{H})$-approximate local minima within $\tilde O(\epsilon^{-3} + \epsilon_{H}^{-6})$ stochastic gradient evaluations (or $\tilde O(\epsilon^{-3})$ when $\epsilon_H = \sqrt{\epsilon}$). The core idea of our framework is a step-size shrinkage scheme to control the average movement of the iterates, which leads to faster convergence to the local minima.

The monotone variational inequality is a central problem in mathematical programming that unifies and generalizes many important settings such as smooth convex optimization, two-player zero-sum games, convex-concave saddle point problems, etc. The extragradient method by Korpelevich [1976] is one of the most popular methods for solving monotone variational inequalities. Despite its long history and intensive attention from the optimization and machine learning community, the following major problem remains open. What is the last-iterate convergence rate of the extragradient method for monotone and Lipschitz variational inequalities with constraints? We resolve this open problem by showing a tight $O\left(\frac{1}{\sqrt{T}}\right)$ last-iterate convergence rate for arbitrary convex feasible sets, which matches the lower bound by Golowich et al. [2020]. Our rate is measured in terms of the standard gap function. The technical core of our result is the monotonicity of a new performance measure -- the tangent residual, which can be viewed as an adaptation of the norm of the operator that takes the local constraints into account. To establish the monotonicity, we develop a new approach that combines the power of the sum-of-squares programming with the low dimensionality of the update rule of the extragradient method. We believe our approach has many additional applications in the analysis of iterative methods.

Stein variational gradient descent (SVGD) is a general-purpose optimization-based sampling algorithm that has recently exploded in popularity, but is limited by two issues: it is known to produce biased samples, and it can be slow to converge on complicated distributions. A recently proposed stochastic variant of SVGD (sSVGD) addresses the first issue, producing unbiased samples by incorporating a special noise into the SVGD dynamics such that asymptotic convergence is guaranteed. Meanwhile, Stein variational Newton (SVN), a Newton-like extension of SVGD, dramatically accelerates the convergence of SVGD by incorporating Hessian information into the dynamics, but also produces biased samples. In this paper we derive, and provide a practical implementation of, a stochastic variant of SVN (sSVN) which is both asymptotically correct and converges rapidly. We demonstrate the effectiveness of our algorithm on a difficult class of test problems -- the Hybrid Rosenbrock density -- and show that sSVN converges using three orders of magnitude fewer gradient evaluations of the log likelihood than its stochastic SVGD counterpart. Our results show that sSVN is a promising approach to accelerating high-precision Bayesian inference tasks with modest-dimension, $d\sim\mathcal{O}(10)$.

In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.

This paper focuses on stochastic saddle point problems with decision-dependent distributions. These are problems whose objective is the expected value of a stochastic payoff function, where random variables are drawn from a distribution induced by a distributional map. For general distributional maps, the problem of finding saddle points is in general computationally burdensome, even if the distribution is known. To enable a tractable solution approach, we introduce the notion of equilibrium points -- which are saddle points for the stationary stochastic minimax problem that they induce -- and provide conditions for their existence and uniqueness. We demonstrate that the distance between the two solution types is bounded provided that the objective has a strongly-convex-strongly-concave payoff and a Lipschitz continuous distributional map. We develop deterministic and stochastic primal-dual algorithms and demonstrate their convergence to the equilibrium point. In particular, by modeling errors emerging from a stochastic gradient estimator as sub-Weibull random variables, we provide error bounds in expectation and in high probability that hold for each iteration. Moreover, we show convergence to a neighborhood almost surely. Finally, we investigate a condition on the distributional map -- which we call opposing mixture dominance -- that ensures that the objective is strongly-convex-strongly-concave. We tailor the convergence results for the primal-dual algorithms to this opposing mixture dominance setup.

In this paper we propose a methodology to accelerate the resolution of the so-called "Sorted L-One Penalized Estimation" (SLOPE) problem. Our method leverages the concept of "safe screening", well-studied in the literature for \textit{group-separable} sparsity-inducing norms, and aims at identifying the zeros in the solution of SLOPE. More specifically, we derive a set of \(\tfrac{n(n+1)}{2}\) inequalities for each element of the \(n\)-dimensional primal vector and prove that the latter can be safely screened if some subsets of these inequalities are verified. We propose moreover an efficient algorithm to jointly apply the proposed procedure to all the primal variables. Our procedure has a complexity \(\mathcal{O}(n\log n + LT)\) where \(T\leq n\) is a problem-dependent constant and \(L\) is the number of zeros identified by the tests. Numerical experiments confirm that, for a prescribed computational budget, the proposed methodology leads to significant improvements of the solving precision.

We study the decentralized consensus and stochastic optimization problems with compressed communications over static directed graphs. We propose an iterative gradient-based algorithm that compresses messages according to a desired compression ratio. The proposed method provably reduces the communication overhead on the network at every communication round. Contrary to existing literature, we allow for arbitrary compression ratios in the communicated messages. We show a linear convergence rate for the proposed method on the consensus problem. Moreover, we provide explicit convergence rates for decentralized stochastic optimization problems on smooth functions that are either (i) strongly convex, (ii) convex, or (iii) non-convex. Finally, we provide numerical experiments to illustrate convergence under arbitrary compression ratios and the communication efficiency of our algorithm.

The stochastic gradient Langevin Dynamics is one of the most fundamental algorithms to solve sampling problems and non-convex optimization appearing in several machine learning applications. Especially, its variance reduced versions have nowadays gained particular attention. In this paper, we study two variants of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynamics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their convergence to the objective distribution in terms of KL-divergence under the sole assumptions of smoothness and Log-Sobolev inequality which are weaker conditions than those used in prior works for these algorithms. With the batch size and the inner loop length set to $\sqrt{n}$, the gradient complexity to achieve an $\epsilon$-precision is $\tilde{O}((n+dn^{1/2}\epsilon^{-1})\gamma^2 L^2\alpha^{-2})$, which is an improvement from any previous analyses. We also show some essential applications of our result to non-convex optimization.

We propose a First-Order System Least Squares (FOSLS) method based on deep-learning for numerically solving second-order elliptic PDEs. The method we propose is capable of dealing with either variational and non-variational problems, and because of its meshless nature, it can also deal with problems posed in high-dimensional domains. We prove the $\Gamma$-convergence of the neural network approximation towards the solution of the continuous problem, and extend the convergence proof to some well-known related methods. Finally, we present several numerical examples illustrating the performance of our discretization.

北京阿比特科技有限公司