亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel approach to enhance autonomous robotic manipulation using the Large Language Model (LLM) for logical inference, converting high-level language commands into sequences of executable motion functions. The proposed system combines the advantage of LLM with YOLO-based environmental perception to enable robots to autonomously make reasonable decisions and task planning based on the given commands. Additionally, to address the potential inaccuracies or illogical actions arising from LLM, a combination of teleoperation and Dynamic Movement Primitives (DMP) is employed for action correction. This integration aims to improve the practicality and generalizability of the LLM-based human-robot collaboration system.

相關內容

This paper studies Flag sequences for lowcomplexity delay-Doppler estimation by exploiting their distinctive peak-curtain ambiguity functions (AFs). Unlike the existing Flag sequence designs that are limited to prime lengths and periodic auto-AFs, we aim to design Flag sequence sets of arbitrary lengths and with low (nontrivial) periodic/aperiodic auto- and cross-AFs. Since every Flag sequence consists of a Curtain sequence and a Peak sequence, we first investigate the algebraic design of zone-based Curtain sequence sets of arbitrary lengths. Our proposed design gives rise to novel Curtain sequence sets with ideal curtain auto-AFs and low/zero cross-AFs within the delay-Doppler zone of interest. Leveraging these Curtain sequence sets, two optimization problems are formulated to minimize the summed customized weighted integrated sidelobe level (SCWISL) of the Flag sequence set. Accelerated Parallel Partially Majorization-Minimization Algorithms are proposed to jointly optimize the transmit Flag sequences and matched/mismatched reference sequences stored in the receiver. Simulations demonstrate that our proposed Flag sequences lead to improved SCWISL and customized peak-to-max-sidelobe ratio compared with the existing Flag sequences. Additionally, our Flag sequences under Flag method exhibit Mean Squared Errors that approach the Cramer-Rao Lower Bound and the Sampling Bound at high signal-to-noise power ratios.

This paper aims to explore the potential of combining Deep Reinforcement Learning (DRL) with Knowledge Distillation (KD) by distilling various DRL algorithms and studying their distillation effects. By doing so, the computational burden of deep models could be reduced while maintaining the performance. The primary objective is to provide a benchmark for evaluating the performance of different DRL algorithms that have been refined using KD techniques. By distilling these algorithms, the goal is to develop efficient and fast DRL models. This research is expected to provide valuable insights that can facilitate further advancements in this promising direction. By exploring the combination of DRL and KD, this work aims to promote the development of models that require fewer GPU resources, learn more quickly, and make faster decisions in complex environments. The results of this research have the capacity to significantly advance the field of DRL and pave the way for the future deployment of resource-efficient, decision-making intelligent systems.

This paper proposes a Federated Learning Code Smell Detection (FedCSD) approach that allows organizations to collaboratively train federated ML models while preserving their data privacy. These assertions have been supported by three experiments that have significantly leveraged three manually validated datasets aimed at detecting and examining different code smell scenarios. In experiment 1, which was concerned with a centralized training experiment, dataset two achieved the lowest accuracy (92.30%) with fewer smells, while datasets one and three achieved the highest accuracy with a slight difference (98.90% and 99.5%, respectively). This was followed by experiment 2, which was concerned with cross-evaluation, where each ML model was trained using one dataset, which was then evaluated over the other two datasets. Results from this experiment show a significant drop in the model's accuracy (lowest accuracy: 63.80\%) where fewer smells exist in the training dataset, which has a noticeable reflection (technical debt) on the model's performance. Finally, the last and third experiments evaluate our approach by splitting the dataset into 10 companies. The ML model was trained on the company's site, then all model-updated weights were transferred to the server. Ultimately, an accuracy of 98.34% was achieved by the global model that has been trained using 10 companies for 100 training rounds. The results reveal a slight difference in the global model's accuracy compared to the highest accuracy of the centralized model, which can be ignored in favour of the global model's comprehensive knowledge, lower training cost, preservation of data privacy, and avoidance of the technical debt problem.

This paper presents two variations of a novel stochastic prediction algorithm that enables mobile robots to accurately and robustly predict the future state of complex dynamic scenes. The proposed algorithm uses a variational autoencoder to predict a range of possible future states of the environment. The algorithm takes full advantage of the motion of the robot itself, the motion of dynamic objects, and the geometry of static objects in the scene to improve prediction accuracy. Three simulated and real-world datasets collected by different robot models are used to demonstrate that the proposed algorithm is able to achieve more accurate and robust prediction performance than other prediction algorithms. Furthermore, a predictive uncertainty-aware planner is proposed to demonstrate the effectiveness of the proposed predictor in simulation and real-world navigation experiments. Implementations are open source at //github.com/TempleRAIL/SOGMP.

We propose a novel compact and efficient neural BRDF offering highly versatile material representation, yet with very-light memory and neural computation consumption towards achieving real-time rendering. The results in Figure 1, rendered at full HD resolution on a current desktop machine, show that our system achieves real-time rendering with a wide variety of appearances, which is approached by the following two designs. On the one hand, noting that bidirectional reflectance is distributed in a very sparse high-dimensional subspace, we propose to project the BRDF into two low-dimensional components, i.e., two hemisphere feature-grids for incoming and outgoing directions, respectively. On the other hand, learnable neural reflectance primitives are distributed on our highly-tailored spherical surface grid, which offer informative features for each component and alleviate the conventional heavy feature learning network to a much smaller one, leading to very fast evaluation. These primitives are centrally stored in a codebook and can be shared across multiple grids and even across materials, based on the low-cost indices stored in material-specific spherical surface grids. Our neural BRDF, which is agnostic to the material, provides a unified framework that can represent a variety of materials in consistent manner. Comprehensive experimental results on measured BRDF compression, Monte Carlo simulated BRDF acceleration, and extension to spatially varying effect demonstrate the superior quality and generalizability achieved by the proposed scheme.

This paper introduces a novel method called Distance-Based Independence Screening for Canonical Analysis (DISCA) that performs simultaneous dimension reduction for a pair of random variables by optimizing the distance covariance (dCov). dCov is a statistic first proposed by Sz\'ekely et al. [2009] for independence testing. Compared with sufficient dimension reduction (SDR) and canonical correlation analysis (CCA)-based approaches, DISCA is a model-free approach that does not impose dimensional or distributional restrictions on variables and is more sensitive to nonlinear relationships. Theoretically, we establish a non-asymptotic error bound to provide a guarantee of our method's performance. Numerically, DISCA performs comparable to or better than other state-of-the-art algorithms and is computationally faster. All codes of our DISCA method can be found on GitHub https : //github.com/Yijin911/DISCA.git, including an R package named DISCA.

This paper introduces a Factor Augmented Sparse Throughput (FAST) model that utilizes both latent factors and sparse idiosyncratic components for nonparametric regression. The FAST model bridges factor models on one end and sparse nonparametric models on the other end. It encompasses structured nonparametric models such as factor augmented additive models and sparse low-dimensional nonparametric interaction models and covers the cases where the covariates do not admit factor structures. Via diversified projections as estimation of latent factor space, we employ truncated deep ReLU networks to nonparametric factor regression without regularization and to a more general FAST model using nonconvex regularization, resulting in factor augmented regression using neural network (FAR-NN) and FAST-NN estimators respectively. We show that FAR-NN and FAST-NN estimators adapt to the unknown low-dimensional structure using hierarchical composition models in nonasymptotic minimax rates. We also study statistical learning for the factor augmented sparse additive model using a more specific neural network architecture. Our results are applicable to the weak dependent cases without factor structures. In proving the main technical result for FAST-NN, we establish a new deep ReLU network approximation result that contributes to the foundation of neural network theory. Our theory and methods are further supported by simulation studies and an application to macroeconomic data.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司