亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We aim to deepen the theoretical understanding of Graph Neural Networks (GNNs) on large graphs, with a focus on their expressive power. Existing analyses relate this notion to the graph isomorphism problem, which is mostly relevant for graphs of small sizes, or studied graph classification or regression tasks, while prediction tasks on nodes are far more relevant on large graphs. Recently, several works showed that, on very general random graphs models, GNNs converge to certains functions as the number of nodes grows. In this paper, we provide a more complete and intuitive description of the function space generated by equivariant GNNs for node-tasks, through general notions of convergence that encompass several previous examples. We emphasize the role of input node features, and study the impact of node Positional Encodings (PEs), a recent line of work that has been shown to yield state-of-the-art results in practice. Through the study of several examples of PEs on large random graphs, we extend previously known universality results to significantly more general models. Our theoretical results hint at some normalization tricks, which is shown numerically to have a positive impact on GNN generalization on synthetic and real data. Our proofs contain new concentration inequalities of independent interest.

相關內容

In this article we present new results about the expressivity of Graph Neural Networks (GNNs). We prove that for any GNN with piecewise polynomial activations, whose architecture size does not grow with the graph input sizes, there exists a pair of non-isomorphic rooted trees of depth two such that the GNN cannot distinguish their root vertex up to an arbitrary number of iterations. The proof relies on tools from the algebra of symmetric polynomials. In contrast, it was already known that unbounded GNNs (those whose size is allowed to change with the graph sizes) with piecewise polynomial activations can distinguish these vertices in only two iterations. Our results imply a strict separation between bounded and unbounded size GNNs, answering an open question formulated by [Grohe, 2021]. We next prove that if one allows activations that are not piecewise polynomial, then in two iterations a single neuron perceptron can distinguish the root vertices of any pair of nonisomorphic trees of depth two (our results hold for activations like the sigmoid, hyperbolic tan and others). This shows how the power of graph neural networks can change drastically if one changes the activation function of the neural networks. The proof of this result utilizes the Lindemann-Weierstrauss theorem from transcendental number theory.

Deep neural networks (DNNs) are increasingly being deployed to perform safety-critical tasks. The opacity of DNNs, which prevents humans from reasoning about them, presents new safety and security challenges. To address these challenges, the verification community has begun developing techniques for rigorously analyzing DNNs, with numerous verification algorithms proposed in recent years. While a significant amount of work has gone into developing these verification algorithms, little work has been devoted to rigorously studying the computability and complexity of the underlying theoretical problems. Here, we seek to contribute to the bridging of this gap. We focus on two kinds of DNNs: those that employ piecewise-linear activation functions (e.g., ReLU), and those that employ piecewise-smooth activation functions (e.g., Sigmoids). We prove the two following theorems: 1) The decidability of verifying DNNs with a particular set of piecewise-smooth activation functions is equivalent to a well-known, open problem formulated by Tarski; and 2) The DNN verification problem for any quantifier-free linear arithmetic specification can be reduced to the DNN reachability problem, whose approximation is NP-complete. These results answer two fundamental questions about the computability and complexity of DNN verification, and the ways it is affected by the network's activation functions and error tolerance; and could help guide future efforts in developing DNN verification tools.

Directed acyclic graphs (DAGs) are directed graphs in which there is no path from a vertex to itself. DAGs are an omnipresent data structure in computer science and the problem of counting the DAGs of given number of vertices and to sample them uniformly at random has been solved respectively in the 70's and the 00's. In this paper, we propose to explore a new variation of this model where DAGs are endowed with an independent ordering of the out-edges of each vertex, thus allowing to model a wide range of existing data structures. We provide efficient algorithms for sampling objects of this new class, both with or without control on the number of edges, and obtain an asymptotic equivalent of their number. We also show the applicability of our method by providing an effective algorithm for the random generation of classical labelled DAGs with a prescribed number of vertices and edges, based on a similar approach. This is the first known algorithm for sampling labelled DAGs with full control on the number of edges, and it meets a need in terms of applications, that had already been acknowledged in the literature.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.

北京阿比特科技有限公司