亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of testing for long-range dependence for time-varying coefficient regression models. The covariates and errors are assumed to be locally stationary, which allows complex temporal dynamics and heteroscedasticity. We develop KPSS, R/S, V/S, and K/S-type statistics based on the nonparametric residuals, and propose bootstrap approaches equipped with a difference-based long-run covariance matrix estimator for practical implementation. Under the null hypothesis, the local alternatives as well as the fixed alternatives, we derive the limiting distributions of the test statistics, establish the uniform consistency of the difference-based long-run covariance estimator, and justify the bootstrap algorithms theoretically. In particular, the exact local asymptotic power of our testing procedure enjoys the order $O( \log^{-1} n)$, the same as that of the classical KPSS test for long memory in strictly stationary series without covariates. We demonstrate the effectiveness of our tests by extensive simulation studies. The proposed tests are applied to a COVID-19 dataset in favor of long-range dependence in the cumulative confirmed series of COVID-19 in several countries, and to the Hong Kong circulatory and respiratory dataset, identifying a new type of 'spurious long memory'.

相關內容

The cost of both generalized least squares (GLS) and Gibbs sampling in a crossed random effects model can easily grow faster than $N^{3/2}$ for $N$ observations. Ghosh et al. (2020) develop a backfitting algorithm that reduces the cost to $O(N)$. Here we extend that method to a generalized linear mixed model for logistic regression. We use backfitting within an iteratively reweighted penalized least square algorithm. The specific approach is a version of penalized quasi-likelihood due to Schall (1991). A straightforward version of Schall's algorithm would also cost more than $N^{3/2}$ because it requires the trace of the inverse of a large matrix. We approximate that quantity at cost $O(N)$ and prove that this substitution makes an asymptotically negligible difference. Our backfitting algorithm also collapses the fixed effect with one random effect at a time in a way that is analogous to the collapsed Gibbs sampler of Papaspiliopoulos et al. (2020). We use a symmetric operator that facilitates efficient covariance computation. We illustrate our method on a real dataset from Stitch Fix. By properly accounting for crossed random effects we show that a naive logistic regression could underestimate sampling variances by several hundred fold.

In the paper, we introduce an unconstrained analysis model based on the $\ell_{1}-\alpha \ell_{2}$ $(0< \alpha \leq1)$ minimization for the signal and image reconstruction. We develop some new technology lemmas for tight frame, and the recovery guarantees based on the restricted isometry property adapted to frames. The effective algorithm is established for the proposed nonconvex analysis model. We illustrate the performance of the proposed model and algorithm for the signal and compressed sensing MRI reconstruction via extensive numerical experiments. And their performance is better than that of the existing methods.

We study the problem of identifying the source of a stochastic diffusion process spreading on a graph based on the arrival times of the diffusion at a few queried nodes. In a graph $G=(V,E)$, an unknown source node $v^* \in V$ is drawn uniformly at random, and unknown edge weights $w(e)$ for $e\in E$, representing the propagation delays along the edges, are drawn independently from a Gaussian distribution of mean $1$ and variance $\sigma^2$. An algorithm then attempts to identify $v^*$ by querying nodes $q \in V$ and being told the length of the shortest path between $q$ and $v^*$ in graph $G$ weighted by $w$. We consider two settings: non-adaptive, in which all query nodes must be decided in advance, and adaptive, in which each query can depend on the results of the previous ones. Both settings are motivated by an application of the problem to epidemic processes (where the source is called patient zero), which we discuss in detail. We characterize the query complexity when $G$ is an $n$-node path. In the non-adaptive setting, $\Theta(n\sigma^2)$ queries are needed for $\sigma^2 \leq 1$, and $\Theta(n)$ for $\sigma^2 \geq 1$. In the adaptive setting, somewhat surprisingly, only $\Theta(\log\log_{1/\sigma}n)$ are needed when $\sigma^2 \leq 1/2$, and $\Theta(\log \log n)+O_\sigma(1)$ when $\sigma^2 \geq 1/2$. This is the first mathematical study of source identification with time queries in a non-deterministic diffusion process.

Content-delivery applications can achieve scalability and reduce wide-area network traffic using geographically distributed caches. However, each deployed cache has an associated cost, and under time-varying request rates (e.g., a daily cycle) there may be long periods when the request rate from the local region is not high enough to justify this cost. Cloud computing offers a solution to problems of this kind, by supporting dynamic allocation and release of resources. In this paper, we analyze the potential benefits from dynamically instantiating caches using resources from cloud service providers. We develop novel analytic caching models that accommodate time-varying request rates, transient behavior as a cache fills following instantiation, and selective cache insertion policies. Within the context of a simple cost model, we then develop bounds and compare policies with optimized parameter selections to obtain insights into key cost/performance tradeoffs. We find that dynamic cache instantiation can provide substantial cost reductions, that potential reductions strongly dependent on the object popularity skew, and that selective cache insertion can be even more beneficial in this context than with conventional edge caches. Finally, our contributions also include accurate and easy-to-compute approximations that are shown applicable to LRU caches under time-varying workloads.

We introduce a novel approach to dynamic obstacle avoidance based on Deep Reinforcement Learning by defining a traffic type independent environment with variable complexity. Filling a gap in the current literature, we thoroughly investigate the effect of missing velocity information on an agent's performance in obstacle avoidance tasks. This is a crucial issue in practice since several sensors yield only positional information of objects or vehicles. We evaluate frequently-applied approaches in scenarios of partial observability, namely the incorporation of recurrency in the deep neural networks and simple frame-stacking. For our analysis, we rely on state-of-the-art model-free deep RL algorithms. The lack of velocity information is found to significantly impact the performance of an agent. Both approaches - recurrency and frame-stacking - cannot consistently replace missing velocity information in the observation space. However, in simplified scenarios, they can significantly boost performance and stabilize the overall training procedure.

Modern-day problems in statistics often face the challenge of exploring and analyzing complex non-Euclidean object data that do not conform to vector space structures or operations. Examples of such data objects include covariance matrices, graph Laplacians of networks, and univariate probability distribution functions. In the current contribution a new concurrent regression model is proposed to characterize the time-varying relation between an object in a general metric space (as a response) and a vector in $\reals^p$ (as a predictor), where concepts from Fr\'echet regression is employed. Concurrent regression has been a well-developed area of research for Euclidean predictors and responses, with many important applications for longitudinal studies and functional data. However, there is no such model available so far for general object data as responses. We develop generalized versions of both global least squares regression and locally weighted least squares smoothing in the context of concurrent regression for responses that are situated in general metric spaces and propose estimators that can accommodate sparse and/or irregular designs. Consistency results are demonstrated for sample estimates of appropriate population targets along with the corresponding rates of convergence. The proposed models are illustrated with human mortality data and resting state functional Magnetic Resonance Imaging data (fMRI) as responses.

For supervised classification problems, this paper considers estimating the query's label probability through local regression using observed covariates. Well-known nonparametric kernel smoother and $k$-nearest neighbor ($k$-NN) estimator, which take label average over a ball around the query, are consistent but asymptotically biased particularly for a large radius of the ball. To eradicate such bias, local polynomial regression (LPoR) and multiscale $k$-NN (MS-$k$-NN) learn the bias term by local regression around the query and extrapolate it to the query itself. However, their theoretical optimality has been shown for the limit of the infinite number of training samples. For correcting the asymptotic bias with fewer observations, this paper proposes a local radial regression (LRR) and its logistic regression variant called local radial logistic regression (LRLR), by combining the advantages of LPoR and MS-$k$-NN. The idea is simple: we fit the local regression to observed labels by taking the radial distance as the explanatory variable and then extrapolate the estimated label probability to zero distance. Our numerical experiments, including real-world datasets of daily stock indices, demonstrate that LRLR outperforms LPoR and MS-$k$-NN.

Recent advances in Transformer models allow for unprecedented sequence lengths, due to linear space and time complexity. In the meantime, relative positional encoding (RPE) was proposed as beneficial for classical Transformers and consists in exploiting lags instead of absolute positions for inference. Still, RPE is not available for the recent linear-variants of the Transformer, because it requires the explicit computation of the attention matrix, which is precisely what is avoided by such methods. In this paper, we bridge this gap and present Stochastic Positional Encoding as a way to generate PE that can be used as a replacement to the classical additive (sinusoidal) PE and provably behaves like RPE. The main theoretical contribution is to make a connection between positional encoding and cross-covariance structures of correlated Gaussian processes. We illustrate the performance of our approach on the Long-Range Arena benchmark and on music generation.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Deep reinforcement learning (RL) methods generally engage in exploratory behavior through noise injection in the action space. An alternative is to add noise directly to the agent's parameters, which can lead to more consistent exploration and a richer set of behaviors. Methods such as evolutionary strategies use parameter perturbations, but discard all temporal structure in the process and require significantly more samples. Combining parameter noise with traditional RL methods allows to combine the best of both worlds. We demonstrate that both off- and on-policy methods benefit from this approach through experimental comparison of DQN, DDPG, and TRPO on high-dimensional discrete action environments as well as continuous control tasks. Our results show that RL with parameter noise learns more efficiently than traditional RL with action space noise and evolutionary strategies individually.

北京阿比特科技有限公司