亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, communication engineers put strong emphasis on artificial neural network (ANN)-based algorithms with the aim of increasing the flexibility and autonomy of the system and its components. In this context, unsupervised training is of special interest as it enables adaptation without the overhead of transmitting pilot symbols. In this work, we present a novel ANN-based, unsupervised equalizer and its trainable field programmable gate array (FPGA) implementation. We demonstrate that our custom loss function allows the ANN to adapt for varying channel conditions, approaching the performance of a supervised baseline. Furthermore, as a first step towards a practical communication system, we design an efficient FPGA implementation of our proposed algorithm, which achieves a throughput in the order of Gbit/s, outperforming a high-performance GPU by a large margin.

相關內容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA現場可編程門陣列國際研討會。 Publisher:ACM。 SIT:

Benefiting from tens of GHz of bandwidth, terahertz (THz) communications has become a promising technology for future 6G networks. However, the conventional hybrid beamforming architecture based on frequency-independent phase-shifters is not able to cope with the beam split effect (BSE) in THz massive multiple-input multiple-output (MIMO) systems. Despite some work introducing the frequency-dependent phase shifts via the time delay network to mitigate the beam splitting in THz wideband communications, the corresponding issue in reconfigurable intelligent surface (RIS)-aided communications has not been well investigated. In this paper, the BSE in THz massive MIMO is quantified by analyzing the array gain loss. A new beamforming architecture has been proposed to mitigate this effect under RIS-aided communications scenarios. Simulations are performed to evaluate the effectiveness of the proposed system architecture in combating the array gain loss.

We present the first algorithm to efficiently compute certifiably optimal solutions to range-aided simultaneous localization and mapping (RA-SLAM) problems. Robotic navigation systems increasingly incorporate point-to-point ranging sensors, leading to state estimation problems in the form of RA-SLAM. However, the RA-SLAM problem is significantly more difficult to solve than traditional pose-graph SLAM: ranging sensor models introduce non-convexity and single range measurements do not uniquely determine the transform between the involved sensors. As a result, RA-SLAM inference is sensitive to initial estimates yet lacks reliable initialization techniques. Our approach, certifiably correct RA-SLAM (CORA), leverages a novel quadratically constrained quadratic programming (QCQP) formulation of RA-SLAM to relax the RA-SLAM problem to a semidefinite program (SDP). CORA solves the SDP efficiently using the Riemannian Staircase methodology; the SDP solution provides both (i) a lower bound on the RA-SLAM problem's optimal value, and (ii) an approximate solution of the RA-SLAM problem, which can be subsequently refined using local optimization. CORA applies to problems with arbitrary pose-pose, pose-landmark, and ranging measurements and, due to using convex relaxation, is insensitive to initialization. We evaluate CORA on several real-world problems. In contrast to state-of-the-art approaches, CORA is able to obtain high-quality solutions on all problems despite being initialized with random values. Additionally, we study the tightness of the SDP relaxation with respect to important problem parameters: the number of (i) robots, (ii) landmarks, and (iii) range measurements. These experiments demonstrate that the SDP relaxation is often tight and reveal relationships between graph rigidity and the tightness of the SDP relaxation.

Cellular traffic prediction is a crucial activity for optimizing networks in fifth-generation (5G) networks and beyond, as accurate forecasting is essential for intelligent network design, resource allocation and anomaly mitigation. Although machine learning (ML) is a promising approach to effectively predict network traffic, the centralization of massive data in a single data center raises issues regarding confidentiality, privacy and data transfer demands. To address these challenges, federated learning (FL) emerges as an appealing ML training framework which offers high accurate predictions through parallel distributed computations. However, the environmental impact of these methods is often overlooked, which calls into question their sustainability. In this paper, we address the trade-off between accuracy and energy consumption in FL by proposing a novel sustainability indicator that allows assessing the feasibility of ML models. Then, we comprehensively evaluate state-of-the-art deep learning (DL) architectures in a federated scenario using real-world measurements from base station (BS) sites in the area of Barcelona, Spain. Our findings indicate that larger ML models achieve marginally improved performance but have a significant environmental impact in terms of carbon footprint, which make them impractical for real-world applications.

Community detection becomes an important problem with the booming of social networks. The Medoid-Shift algorithm preserves the benefits of Mean-Shift and can be applied to problems based on distance matrix, such as community detection. One drawback of the Medoid-Shift algorithm is that there may be no data points within the neighborhood region defined by a distance parameter. To deal with the community detection problem better, a new algorithm called Revised Medoid-Shift (RMS) in this work is thus proposed. During the process of finding the next medoid, the RMS algorithm is based on a neighborhood defined by KNN, while the original Medoid-Shift is based on a neighborhood defined by a distance parameter. Since the neighborhood defined by KNN is more stable than the one defined by the distance parameter in terms of the number of data points within the neighborhood, the RMS algorithm may converge more smoothly. In the RMS method, each of the data points is shifted towards a medoid within the neighborhood defined by KNN. After the iterative process of shifting, each of the data point converges into a cluster center, and the data points converging into the same center are grouped into the same cluster. The RMS algorithm is tested on two kinds of datasets including community datasets with known ground truth partition and community datasets without ground truth partition respectively. The experiment results show sthat the proposed RMS algorithm generally produces betster results than Medoid-Shift and some state-of-the-art together with most classic community detection algorithms on different kinds of community detection datasets.

In this study, we address the challenge of 3D scene structure recovery from monocular depth estimation. While traditional depth estimation methods leverage labeled datasets to directly predict absolute depth, recent advancements advocate for mix-dataset training, enhancing generalization across diverse scenes. However, such mixed dataset training yields depth predictions only up to an unknown scale and shift, hindering accurate 3D reconstructions. Existing solutions necessitate extra 3D datasets or geometry-complete depth annotations, constraints that limit their versatility. In this paper, we propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations. To produce realistic 3D structures, we render novel views of the reconstructed scenes and design loss functions to promote depth estimation consistency across different views. Comprehensive experiments underscore our framework's superior generalization capabilities, surpassing existing state-of-the-art methods on several benchmark datasets without leveraging extra training information. Moreover, our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients using solely unlabeled images.

Deep neural networks (DNN) have demonstrated unprecedented success for medical imaging applications. However, due to the issue of limited dataset availability and the strict legal and ethical requirements for patient privacy protection, the broad applications of medical imaging classification driven by DNN with large-scale training data have been largely hindered. For example, when training the DNN from one domain (e.g., with data only from one hospital), the generalization capability to another domain (e.g., data from another hospital) could be largely lacking. In this paper, we aim to tackle this problem by developing the privacy-preserving constrained domain generalization method, aiming to improve the generalization capability under the privacy-preserving condition. In particular, We propose to improve the information aggregation process on the centralized server-side with a novel gradient alignment loss, expecting that the trained model can be better generalized to the "unseen" but related medical images. The rationale and effectiveness of our proposed method can be explained by connecting our proposed method with the Maximum Mean Discrepancy (MMD) which has been widely adopted as the distribution distance measurement. Experimental results on two challenging medical imaging classification tasks indicate that our method can achieve better cross-domain generalization capability compared to the state-of-the-art federated learning methods.

One main challenge for implementing intelligent reflecting surface (IRS) aided communications lies in the difficulty to obtain the channel knowledge for the base station (BS)-IRS-user cascaded links, which is needed to design high-performance IRS reflection in practice. Traditional methods for estimating IRS cascaded channels are usually based on the additional pilot signals received at the BS/users, which increase the system training overhead and also may not be compatible with the current communication protocols. To tackle this challenge, we propose in this paper a new single-layer neural network (NN)-enabled IRS channel estimation method based on only the knowledge of users' individual received signal power measurements corresponding to different IRS random training reflections, which are easily accessible in current wireless systems. To evaluate the effectiveness of the proposed channel estimation method, we design the IRS reflection for data transmission based on the estimated cascaded channels in an IRS-aided multiuser communication system. Numerical results show that the proposed IRS channel estimation and reflection design can significantly improve the minimum received signal-to-noise ratio (SNR) among all users, as compared to existing power measurement based designs.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

北京阿比特科技有限公司