This work addresses scaling up the sketch classification task into a large number of categories. Collecting sketches for training is a slow and tedious process that has so far precluded any attempts to large-scale sketch recognition. We overcome the lack of training sketch data by exploiting labeled collections of natural images that are easier to obtain. To bridge the domain gap we present a novel augmentation technique that is tailored to the task of learning sketch recognition from a training set of natural images. Randomization is introduced in the parameters of edge detection and edge selection. Natural images are translated to a pseudo-novel domain called "randomized Binary Thin Edges" (rBTE), which is used as a training domain instead of natural images. The ability to scale up is demonstrated by training CNN-based sketch recognition of more than 2.5 times larger number of categories than used previously. For this purpose, a dataset of natural images from 874 categories is constructed by combining a number of popular computer vision datasets. The categories are selected to be suitable for sketch recognition. To estimate the performance, a subset of 393 categories with sketches is also collected.
Contrastive-based self-supervised learning methods achieved great success in recent years. However, self-supervision requires extremely long training epochs (e.g., 800 epochs for MoCo v3) to achieve promising results, which is unacceptable for the general academic community and hinders the development of this topic. This work revisits the momentum-based contrastive learning frameworks and identifies the inefficiency in which two augmented views generate only one positive pair. We propose Fast-MoCo - a novel framework that utilizes combinatorial patches to construct multiple positive pairs from two augmented views, which provides abundant supervision signals that bring significant acceleration with neglectable extra computational cost. Fast-MoCo trained with 100 epochs achieves 73.5% linear evaluation accuracy, similar to MoCo v3 (ResNet-50 backbone) trained with 800 epochs. Extra training (200 epochs) further improves the result to 75.1%, which is on par with state-of-the-art methods. Experiments on several downstream tasks also confirm the effectiveness of Fast-MoCo.
The main question we address in this paper is how to scale up visual recognition of unseen classes, also known as zero-shot learning, to tens of thousands of categories as in the ImageNet-21K benchmark. At this scale, especially with many fine-grained categories included in ImageNet-21K, it is critical to learn quality visual semantic representations that are discriminative enough to recognize unseen classes and distinguish them from seen ones. We propose a \emph{H}ierarchical \emph{G}raphical knowledge \emph{R}epresentation framework for the confidence-based classification method, dubbed as HGR-Net. Our experimental results demonstrate that HGR-Net can grasp class inheritance relations by utilizing hierarchical conceptual knowledge. Our method significantly outperformed all existing techniques, boosting the performance by 7\% compared to the runner-up approach on the ImageNet-21K benchmark. We show that HGR-Net is learning-efficient in few-shot scenarios. We also analyzed our method on smaller datasets like ImageNet-21K-P, 2-hops and 3-hops, demonstrating its generalization ability. Our benchmark and code are available at //kaiyi.me/p/hgrnet.html.
Neural networks have seen an explosion of usage and research in the past decade, particularly within the domains of computer vision and natural language processing. However, only recently have advancements in neural networks yielded performance improvements beyond narrow applications and translated to expanded multitask models capable of generalizing across multiple data types and modalities. Simultaneously, it has been shown that neural networks are overparameterized to a high degree, and pruning techniques have proved capable of significantly reducing the number of active weights within the network while largely preserving performance. In this work, we identify a methodology and network representational structure which allows a pruned network to employ previously unused weights to learn subsequent tasks. We employ these methodologies on well-known benchmarking datasets for testing purposes and show that networks trained using our approaches are able to learn multiple tasks, which may be related or unrelated, in parallel or in sequence without sacrificing performance on any task or exhibiting catastrophic forgetting.
Image datasets have been steadily growing in size, harming the feasibility and efficiency of large-scale 3D reconstruction methods. In this paper, a novel approach for scaling Multi-View Stereo (MVS) algorithms up to arbitrarily large collections of images is proposed. Specifically, the problem of reconstructing the 3D model of an entire city is targeted, starting from a set of videos acquired by a moving vehicle equipped with several high-resolution cameras. Initially, the presented method exploits an approximately uniform distribution of poses and geometry and builds a set of overlapping clusters. Then, an Integer Linear Programming (ILP) problem is formulated for each cluster to select an optimal subset of views that guarantees both visibility and matchability. Finally, local point clouds for each cluster are separately computed and merged. Since clustering is independent from pairwise visibility information, the proposed algorithm runs faster than existing literature and allows for a massive parallelization. Extensive testing on urban data are discussed to show the effectiveness and the scalability of this approach.
Entity Matching (EM), which aims to identify whether two entity records from two relational tables refer to the same real-world entity, is one of the fundamental problems in data management. Traditional EM assumes that two tables are homogeneous with the aligned schema, while it is common that entity records of different formats (e.g., relational, semi-structured, or textual types) involve in practical scenarios. It is not practical to unify their schemas due to the different formats. To support EM on format-different entity records, Generalized Entity Matching (GEM) has been proposed and gained much attention recently. To do GEM, existing methods typically perform in a supervised learning way, which relies on a large amount of high-quality labeled examples. However, the labeling process is extremely labor-intensive, and frustrates the use of GEM. Low-resource GEM, i.e., GEM that only requires a small number of labeled examples, becomes an urgent need. To this end, this paper, for the first time, focuses on the low-resource GEM and proposes a novel low-resource GEM method, termed as PromptEM. PromptEM has addressed three challenging issues (i.e., designing GEM-specific prompt-tuning, improving pseudo-labels quality, and running efficient self-training) in low-resource GEM. Extensive experimental results on eight real benchmarks demonstrate the superiority of PromptEM in terms of effectiveness and efficiency.
Fine-tuning models on edge devices like mobile phones would enable privacy-preserving personalization over sensitive data. However, edge training has historically been limited to relatively small models with simple architectures because training is both memory and energy intensive. We present POET, an algorithm to enable training large neural networks on memory-scarce battery-operated edge devices. POET jointly optimizes the integrated search search spaces of rematerialization and paging, two algorithms to reduce the memory consumption of backpropagation. Given a memory budget and a run-time constraint, we formulate a mixed-integer linear program (MILP) for energy-optimal training. Our approach enables training significantly larger models on embedded devices while reducing energy consumption while not modifying mathematical correctness of backpropagation. We demonstrate that it is possible to fine-tune both ResNet-18 and BERT within the memory constraints of a Cortex-M class embedded device while outperforming current edge training methods in energy efficiency. POET is an open-source project available at //github.com/ShishirPatil/poet
The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.