亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a novel high order explicit time discretization method for the acoustic wave equation with discontinuous coefficients. The space discretization is based on the unfitted finite element method in the discontinuous Galerkin framework which allows us to treat problems with complex interface geometry on Cartesian meshes. The strong stability and optimal $hp$-version error estimates both in time and space are established. Numerical examples confirm our theoretical results.

相關內容

We investigate time complexities of finite difference methods for solving the high-dimensional linear heat equation, the high-dimensional linear hyperbolic equation and the multiscale hyperbolic heat system with quantum algorithms (hence referred to as the "quantum difference methods"). Our detailed analyses show that for the heat and linear hyperbolic equations the quantum difference methods provide exponential speedup over the classical difference method with respect to the spatial dimension. For the multiscale problem, the time complexity of both the classical treatment and quantum treatment for the explicit scheme scales as $O(1/\varepsilon)$, where $\varepsilon$ is the scaling parameter, while the scaling for the Asymptotic-Preserving (AP) schemes does not depend on $\varepsilon$. This indicates that it is still of great importance to develop AP schemes for multiscale problems in quantum computing.

This paper applies a discontinuous Galerkin finite element method to the Kelvin-Voigt viscoelastic fluid motion equations when the forcing function is in $L^\infty({\bf L}^2)$-space. Optimal a priori error estimates in $L^\infty({\bf L}^2)$-norm for the velocity and in $L^\infty(L^2)$-norm for the pressure approximations for the semi-discrete discontinuous Galerkin method are derived here. The main ingredients for establishing the error estimates are the standard elliptic duality argument and a modified version of the Sobolev-Stokes operator defined on appropriate broken Sobolev spaces. Further, under the smallness assumption on the data, it has been proved that these estimates are valid uniformly in time. Then, a first-order accurate backward Euler method is employed to discretize the semi-discrete discontinuous Galerkin Kelvin-Voigt formulation completely. The fully discrete optimal error estimates for the velocity and pressure are established. Finally, using the numerical experiments, theoretical results are verified. It is worth highlighting here that the error results in this article for the discontinuous Galerkin method applied to the Kelvin-Voigt model using finite element analysis are the first attempt in this direction.

In this paper, both semidiscrete and fully discrete finite element methods are analyzed for the penalized two-dimensional unsteady Navier-Stokes equations with nonsmooth initial data. First order backward Euler method is applied for the time discretization, whereas conforming finite element method is used for the spatial discretization. Optimal $L^2$ error estimates for the semidiscrete as well as the fully discrete approximations of the velocity and of the pressure are derived for realistically assumed conditions on the data. The main ingredient in the proof is the appropriate exploitation of the inverse of the penalized Stokes operator, negative norm estimates and time weighted estimates. Numerical examples are discussed at the end which conform our theoretical results.

In this work, a multirate in time approach resolving the different time scales of a convection-dominated transport and coupled fluid flow is developed and studied in view of goal-oriented error control by means of the Dual Weighted Residual (DWR) method. Key ingredients are an arbitrary degree discontinuous Galerkin time discretization of the underlying subproblems, an a posteriori error representation for the transport problem coupled with flow and its implementation using space-time tensor-product spaces. The error representation allows the separation of the temporal and spatial discretization error which serve as local error indicators for adaptive mesh refinement. The performance of the approach and its software implementation are studied by numerical convergence examples as well as an example of physical interest for convection-dominated transport.

This work analyzes a high order hybridizable discontinuous Galerkin (HDG) method for the linear elasticity problem in a domain not necessarily polyhedral. The domain is approximated by a polyhedral computational domain where the HDG solution can be computed. The introduction of the rotation as one of the unknowns allows us to use the gradient of the displacements to obtain an explicit representation of the boundary data in the computational domain. The boundary data is transferred from the true boundary to the computational boundary by line integrals, where the integrand depends on the Cauchy stress tensor and the rotation. Under closeness assumptions between the computational and true boundaries, the scheme is shown to be well-posed and optimal error estimates are provided even in the nearly incompressible. Numerical experiments in two-dimensions are presented.

We formulate and analyze an adaptive algorithm for isogeometric analysis with hierarchical B-splines for weakly-singular boundary integral equations. We prove that the employed weighted-residual error estimator is reliable and converges at optimal algebraic rate. Numerical experiments with isogeometric boundary elements for the 3D Poisson problem confirm the theoretical results, which also cover general elliptic systems like linear elasticity.

Computations of incompressible flows with velocity boundary conditions require solution of a Poisson equation for pressure with all Neumann boundary conditions. Discretization of such a Poisson equation results in a rank-deficient matrix of coefficients. When a non-conservative discretization method such as finite difference, finite element, or spectral scheme is used, such a matrix also generates an inconsistency which makes the residuals in the iterative solution to saturate at a threshold level that depends on the spatial resolution and order of the discretization scheme. In this paper, we examine inconsistency for a high-order meshless discretization scheme suitable for solving the equations on a complex domain. The high order meshless method uses polyharmonic spline radial basis functions (PHS-RBF) with appended polynomials to interpolate scattered data and constructs the discrete equations by collocation. The PHS-RBF provides the flexibility to vary the order of discretization by increasing the degree of the appended polynomial. In this study, we examine the convergence of the inconsistency for different spatial resolutions and for different degrees of the appended polynomials by solving the Poisson equation for a manufactured solution as well as the Navier-Stokes equations for several fluid flows. We observe that the inconsistency decreases faster than the error in the final solution, and eventually becomes vanishing small at sufficient spatial resolution. The rate of convergence of the inconsistency is observed to be similar or better than the rate of convergence of the discretization errors. This beneficial observation makes it unnecessary to regularize the Poisson equation by fixing either the mean pressure or pressure at an arbitrary point. A simple point solver such as the SOR is seen to be well-convergent, although it can be further accelerated using multilevel methods.

In this paper we are concerned with Trefftz discretizations of the time-dependent linear wave equation in anisotropic media in arbitrary space dimensional domains $\Omega \subset \mathbb{R}^d~ (d\in \mathbb{N})$. We propose two variants of the Trefftz DG method, define novel plane wave basis functions based on rigorous choices of scaling transformations and coordinate transformations, and prove that the corresponding approximate solutions possess optimal-order error estimates with respect to the meshwidth $h$ and the condition number of the coefficient matrices, respectively. Besides, we propose the global Trefftz DG method combined with local DG methods to solve the time-dependent linear nonhomogeneous wave equation in anisotropic media. In particular, the error analysis holds for the (nonhomogeneous) Dirichlet, Neumann, and mixed boundary conditions from the original PDEs. Furthermore, a strategy to discretize the model in heterogeneous media is proposed. The numerical results verify the validity of the theoretical results, and show that the resulting approximate solutions possess high accuracy.

In this article, we have considered a nonlinear nonlocal time dependent fourth order equation demonstrating the deformation of a thin and narrow rectangular plate. We propose $C^1$ conforming virtual element method (VEM) of arbitrary order, $k\ge2$, to approximate the model problem numerically. We employ VEM to discretize the space variable and fully implicit scheme for temporal variable. Well-posedness of the fully discrete scheme is proved under certain conditions on the physical parameters, and we derive optimal order of convergence in both space and time variable. Finally, numerical experiments are presented to illustrate the behaviour of the proposed numerical scheme.

In this article, we deal with the efficient computation of the Wright function in the cases of interest for the expression of solutions of some fractional differential equations. The proposed algorithm is based on the inversion of the Laplace transform of a particular expression of the Wright function for which we discuss in detail the error analysis. We also present a code package that implements the algorithm proposed here in different programming languages. The analysis and implementation are accompanied by an extensive set of numerical experiments that validate both the theoretical estimates of the error and the applicability of the proposed method for representing the solutions of fractional differential equations.

北京阿比特科技有限公司