亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses point-to-point packet routing in undirected networks, which is the most important communication primitive in most networks. The main result proves the existence of routing tables that guarantee a polylog-competitive completion-time $\textbf{deterministically}$: in any undirected network, it is possible to give each node simple stateless deterministic local forwarding rules, such that, any adversarially chosen set of packets are delivered as fast as possible, up to polylog factors. All previous routing strategies crucially required randomization for both route selection and packet scheduling. The core technical contribution of this paper is a new local packet scheduling result of independent interest. This scheduling strategy integrates well with recent sparse semi-oblivious path selection strategies. Such strategies deterministically select not one but several candidate paths for each packet and require a global coordinator to select a single good path from those candidates for each packet. Another challenge is that, even if a single path is selected for each packet, no strategy for scheduling packets along low-congestion paths that is both local and deterministic is known. Our novel scheduling strategy utilizes the fact that every semi-oblivious routing strategy uses only a small (polynomial) subset of candidate routes. It overcomes the issue of global coordination by furthermore being provably robust to adversarial noise. This avoids the issue of having to choose a single path per packet because congestion caused by ineffective candidate paths can be treated as noise. Our results imply the first deterministic universally-optimal algorithms in the distributed supported-CONGEST model for many important global distributed tasks, including computing minimum spanning trees, approximate shortest paths, and part-wise aggregates.

相關內容

Qini curves have emerged as an attractive and popular approach for evaluating the benefit of data-driven targeting rules for treatment allocation. We propose a generalization of the Qini curve to multiple costly treatment arms, that quantifies the value of optimally selecting among both units and treatment arms at different budget levels. We develop an efficient algorithm for computing these curves and propose bootstrap-based confidence intervals that are exact in large samples for any point on the curve. These confidence intervals can be used to conduct hypothesis tests comparing the value of treatment targeting using an optimal combination of arms with using just a subset of arms, or with a non-targeting assignment rule ignoring covariates, at different budget levels. We demonstrate the statistical performance in a simulation experiment and an application to treatment targeting for election turnout.

Spatiotemporal networks' observational capabilities are crucial for accurate data gathering and informed decisions across multiple sectors. This study focuses on the Spatiotemporal Ranged Observer-Observable Bipartite Network (STROOBnet), linking observational nodes (e.g., surveillance cameras) to events within defined geographical regions, enabling efficient monitoring. Using data from Real-Time Crime Camera (RTCC) systems and Calls for Service (CFS) in New Orleans, where RTCC combats rising crime amidst reduced police presence, we address the network's initial observational imbalances. Aiming for uniform observational efficacy, we propose the Proximal Recurrence approach. It outperformed traditional clustering methods like k-means and DBSCAN by offering holistic event frequency and spatial consideration, enhancing observational coverage.

Deep neural networks (DNNs) are powerful tools for approximating the distribution of complex data. It is known that data passing through a trained DNN classifier undergoes a series of geometric and topological simplifications. While some progress has been made toward understanding these transformations in neural networks with smooth activation functions, an understanding in the more general setting of non-smooth activation functions, such as the rectified linear unit (ReLU), which tend to perform better, is required. Here we propose that the geometric transformations performed by DNNs during classification tasks have parallels to those expected under Hamilton's Ricci flow - a tool from differential geometry that evolves a manifold by smoothing its curvature, in order to identify its topology. To illustrate this idea, we present a computational framework to quantify the geometric changes that occur as data passes through successive layers of a DNN, and use this framework to motivate a notion of `global Ricci network flow' that can be used to assess a DNN's ability to disentangle complex data geometries to solve classification problems. By training more than $1,500$ DNN classifiers of different widths and depths on synthetic and real-world data, we show that the strength of global Ricci network flow-like behaviour correlates with accuracy for well-trained DNNs, independently of depth, width and data set. Our findings motivate the use of tools from differential and discrete geometry to the problem of explainability in deep learning.

Semantic communication is of crucial importance for the next-generation wireless communication networks. The existing works have developed semantic communication frameworks based on deep learning. However, systems powered by deep learning are vulnerable to threats such as backdoor attacks and adversarial attacks. This paper delves into backdoor attacks targeting deep learning-enabled semantic communication systems. Since current works on backdoor attacks are not tailored for semantic communication scenarios, a new backdoor attack paradigm on semantic symbols (BASS) is introduced, based on which the corresponding defense measures are designed. Specifically, a training framework is proposed to prevent BASS. Additionally, reverse engineering-based and pruning-based defense strategies are designed to protect against backdoor attacks in semantic communication. Simulation results demonstrate the effectiveness of both the proposed attack paradigm and the defense strategies.

Neural networks are vulnerable to adversarial attacks, i.e., small input perturbations can significantly affect the outputs of a neural network. In safety-critical environments, the inputs often contain noisy sensor data; hence, in this case, neural networks that are robust against input perturbations are required. To ensure safety, the robustness of a neural network must be formally verified. However, training and formally verifying robust neural networks is challenging. We address both of these challenges by employing, for the first time, an end-to-end set-based training procedure that trains robust neural networks for formal verification. Our training procedure trains neural networks, which can be easily verified using simple polynomial-time verification algorithms. Moreover, our extensive evaluation demonstrates that our set-based training procedure effectively trains robust neural networks, which are easier to verify. Set-based trained neural networks consistently match or outperform those trained with state-of-the-art robust training approaches.

One of the challenges for neural networks in real-life applications is the overconfident errors these models make when the data is not from the original training distribution. Addressing this issue is known as Out-of-Distribution (OOD) detection. Many state-of-the-art OOD methods employ an auxiliary dataset as a surrogate for OOD data during training to achieve improved performance. However, these methods fail to fully exploit the local information embedded in the auxiliary dataset. In this work, we propose the idea of leveraging the information embedded in the gradient of the loss function during training to enable the network to not only learn a desired OOD score for each sample but also to exhibit similar behavior in a local neighborhood around each sample. We also develop a novel energy-based sampling method to allow the network to be exposed to more informative OOD samples during the training phase. This is especially important when the auxiliary dataset is large. We demonstrate the effectiveness of our method through extensive experiments on several OOD benchmarks, improving the existing state-of-the-art FPR95 by 4% on our ImageNet experiment. We further provide a theoretical analysis through the lens of certified robustness and Lipschitz analysis to showcase the theoretical foundation of our work. We will publicly release our code after the review process.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司