We show that deep reinforcement learning algorithms can retain their ability to learn without resetting network parameters in settings where the number of gradient updates greatly exceeds the number of environment samples by combatting value function divergence. Under large update-to-data ratios, a recent study by Nikishin et al. (2022) suggested the emergence of a primacy bias, in which agents overfit early interactions and downplay later experience, impairing their ability to learn. In this work, we investigate the phenomena leading to the primacy bias. We inspect the early stages of training that were conjectured to cause the failure to learn and find that one fundamental challenge is a long-standing acquaintance: value function divergence. Overinflated Q-values are found not only on out-of-distribution but also in-distribution data and can be linked to overestimation on unseen action prediction propelled by optimizer momentum. We employ a simple unit-ball normalization that enables learning under large update ratios, show its efficacy on the widely used dm_control suite, and obtain strong performance on the challenging dog tasks, competitive with model-based approaches. Our results question, in parts, the prior explanation for sub-optimal learning due to overfitting early data.
To handle the vast amounts of qualitative data produced in corporate climate communication, stakeholders increasingly rely on Retrieval Augmented Generation (RAG) systems. However, a significant gap remains in evaluating domain-specific information retrieval - the basis for answer generation. To address this challenge, this work simulates the typical tasks of a sustainability analyst by examining 30 sustainability reports with 16 detailed climate-related questions. As a result, we obtain a dataset with over 8.5K unique question-source-answer pairs labeled by different levels of relevance. Furthermore, we develop a use case with the dataset to investigate the integration of expert knowledge into information retrieval with embeddings. Although we show that incorporating expert knowledge works, we also outline the critical limitations of embeddings in knowledge-intensive downstream domains like climate change communication.
Recently, many self-supervised learning methods for image reconstruction have been proposed that can learn from noisy data alone, bypassing the need for ground-truth references. Most existing methods cluster around two classes: i) Noise2Self and similar cross-validation methods that require very mild knowledge about the noise distribution, and ii) Stein's Unbiased Risk Estimator (SURE) and similar approaches that assume full knowledge of the distribution. The first class of methods is often suboptimal compared to supervised learning, and the second class tends to be impractical, as the noise level is often unknown in real-world applications. In this paper, we provide a theoretical framework that characterizes this expressivity-robustness trade-off and propose a new approach based on SURE, but unlike the standard SURE, does not require knowledge about the noise level. Throughout a series of experiments, we show that the proposed estimator outperforms other existing self-supervised methods on various imaging inverse problems
Multimodal contrastive learning uses various data modalities to create high-quality features, but its reliance on extensive data sources on the Internet makes it vulnerable to backdoor attacks. These attacks insert malicious behaviors during training, which are activated by specific triggers during inference, posing significant security risks. Despite existing countermeasures through fine-tuning that reduce the malicious impacts of such attacks, these defenses frequently necessitate extensive training time and degrade clean accuracy. In this study, we propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning. This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities, known as Unlearn Backdoor Threats (UBT). We specifically use overfit training to improve backdoor shortcuts and accurately detect suspicious samples in the potential poisoning data set. Then, we select fewer unlearned samples from suspicious samples for rapid forgetting in order to eliminate the backdoor effect and thus improve backdoor defense efficiency. In the backdoor unlearning process, we present a novel token-based portion unlearning training regime. This technique focuses on the model's compromised elements, dissociating backdoor correlations while maintaining the model's overall integrity. Extensive experimental results show that our method effectively defends against various backdoor attack methods in the CLIP model. Compared to SoTA backdoor defense methods, UBT achieves the lowest attack success rate while maintaining a high clean accuracy of the model (attack success rate decreases by 19% compared to SOTA, while clean accuracy increases by 2.57%).
Neural networks are often challenging to work with due to their large size and complexity. To address this, various methods aim to reduce model size by sparsifying or decomposing weight matrices, such as magnitude pruning and low-rank or block-diagonal factorization. In this work, we present Double Sparse Factorization (DSF), where we factorize each weight matrix into two sparse matrices. Although solving this problem exactly is computationally infeasible, we propose an efficient heuristic based on alternating minimization via ADMM that achieves state-of-the-art results, enabling unprecedented sparsification of neural networks. For instance, in a one-shot pruning setting, our method can reduce the size of the LLaMA2-13B model by 50% while maintaining better performance than the dense LLaMA2-7B model. We also compare favorably with Optimal Brain Compression, the state-of-the-art layer-wise pruning approach for convolutional neural networks. Furthermore, accuracy improvements of our method persist even after further model fine-tuning. Code available at: //github.com/usamec/double_sparse.
We propose a practical framework for designing a physically consistent reconfigurable intelligent surface (RIS) to overcome the inefficiency of the conventional phase gradient approach. For a section of Cape Town and across three different coverage enhancement scenarios, we optimize the amplitude of the RIS reradiation modes using Sionna ray tracing and a gradient-based learning technique. We then determine the required RIS surface/sheet impedance given the desired amplitudes for the reradiation modes, design the corresponding unitcells, and validate the performance through full-wave numerical simulations using CST Microwave Studio. We further validate our approach by fabricating a RIS using the parallel plate waveguide technique and conducting experimental measurements that align with our theoretical predictions.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.