We study a new class of NP search problems, those which can be proved total using standard combinatorial reasoning based on approximate counting. Our model for this kind of reasoning is the bounded arithmetic theory $\mathrm{APC}_2$ of [Je\v{r}\'abek 2009]. In particular, the Ramsey and weak pigeonhole search problems lie in the new class. We give a purely computational characterization of this class and show that, relative to an oracle, it does not contain the problem CPLS, a strengthening of PLS. As CPLS is provably total in the theory $T^2_2$, this shows that $\mathrm{APC}_2$ does not prove every $\forall \Sigma^b_1$ sentence which is provable in bounded arithmetic. This answers the question posed in [Buss, Ko{\l}odziejczyk, Thapen 2014] and represents some progress in the programme of separating the levels of the bounded arithmetic hierarchy by low-complexity sentences. Our main technical tool is an extension of the "fixing lemma" from [Pudl\'ak, Thapen 2017], a form of switching lemma, which we use to show that a random partial oracle from a certain distribution will, with high probability, determine an entire computation of a $\textrm{P}^{\textrm{NP}}$ oracle machine. The introduction to the paper is intended to make the statements and context of the results accessible to someone unfamiliar with NP search problems or with bounded arithmetic.
We give a quantum algorithm for solving the Bounded Distance Decoding (BDD) problem with a subexponential approximation factor on a class of integer lattices. The quantum algorithm uses a well-known but challenging-to-use quantum state on lattices as a type of approximate quantum eigenvector to randomly self-reduce the BDD instance to a random BDD instance which is solvable classically. The running time of the quantum algorithm is polynomial for one range of approximation factors and subexponential time for a second range of approximation factors. The subclass of lattices we study has a natural description in terms of the lattice's periodicity and finite abelian group rank. This view makes for a clean quantum algorithm in terms of finite abelian groups, uses very relatively little from lattice theory, and suggests exploring approximation algorithms for lattice problems in parameters other than dimension alone. A talk on this paper sparked many lively discussions and resulted in a new classical algorithm matching part of our result. We leave it as a challenge to give a classcial algorithm matching the general case.
A proof procedure, in the spirit of the sequent calculus, is proposed to check the validity of entailments between Separation Logic formulas combining inductively defined predicates denoted structures of bounded tree width and theory reasoning. The calculus is sound and complete, in the sense that a sequent is valid iff it admits a (possibly infinite) proof tree. We show that the procedure terminates in the two following cases: (i) When the inductive rules that define the predicates occurring on the left-hand side of the entailment terminate, in which case the proof tree is always finite. (ii) When the theory is empty, in which case every valid sequent admits a rational proof tree, where the total number of pairwise distinct sequents occurring in the proof tree is doubly exponential w.r.t.\ the size of the end-sequent. We also show that the validity problem is undecidable for a wide class of theories, even with a very low expressive power.
Motivated by the high-frequency data streams continuously generated, real-time learning is becoming increasingly important. These data streams should be processed sequentially with the property that the data stream may change over time. In this streaming setting, we propose techniques for minimizing convex objectives through unbiased estimates of their gradients, commonly referred to as stochastic approximation problems. Our methods rely on stochastic approximation algorithms because of their applicability and computational advantages. The reasoning includes iterate averaging that guarantees optimal statistical efficiency under classical conditions. Our non-asymptotic analysis shows accelerated convergence by selecting the learning rate according to the expected data streams. We show that the average estimate converges optimally and robustly for any data stream rate. In addition, noise reduction can be achieved by processing the data in a specific pattern, which is advantageous for large-scale machine learning problems. These theoretical results are illustrated for various data streams, showing the effectiveness of the proposed algorithms.
Online markets are a part of everyday life, and their rules are governed by algorithms. Assuming participants are inherently self-interested, well designed rules can help to increase social welfare. Many algorithms for online markets are based on prices: the seller is responsible for posting prices while buyers make purchases which are most profitable given the posted prices. To make adjustments to the market the seller is allowed to update prices at certain timepoints. Posted prices are an intuitive way to design a market. Despite the fact that each buyer acts selfishly, the seller's goal is often assumed to be that of social welfare maximization. Berger, Eden and Feldman recently considered the case of a market with only three buyers where each buyer has a fixed number of goods to buy and the profit of a bought bundle of items is the sum of profits of the items in the bundle. For such markets, Berger et. al. showed that the seller can maximize social welfare by dynamically updating posted prices before arrival of each buyer. B\'{e}rczi, B\'{e}rczi-Kov\'{a}cs and Sz\"{o}gi showed that the social welfare can be maximized also when each buyer is ready to buy at most two items. We study the power of posted prices with dynamical updates in more general cases. First, we show that the result of Berger et. al. can be generalized from three to four buyers. Then we show that the result of B\'{e}rczi, B\'{e}rczi-Kov\'{a}cs and Sz\"{o}gi can be generalized to the case when each buyer is ready to buy up to three items. We also show that a dynamic pricing is possible whenever there are at most two allocations maximizing social welfare.
Proofs (sequent calculus, natural deduction) and imperative algorithms (pseudocodes) are two well-known coexisting concepts. Then what is their relationship? Our answer is that \[ imperative\ algorithms\ =\ proofs\ with\ cuts \] This observation leads to a generalization to pseudocodes which we call {\it logical pseudocodes}. It is similar to natural deduction proof of computability logic\cite{Jap03,Jap08}. Each statement in it corresponds to a proof step in natural deduction. Therefore, the merit over pseudocode is that each statement is guaranteed to be correct and safe with respect to the initial specifications. It can also be seen as an extension to computability logic web (\colw) with forward reasoning capability.
The $p$-center problem (pCP) is a fundamental problem in location science, where we are given customer demand points and possible facility locations, and we want to choose $p$ of these locations to open a facility such that the maximum distance of any customer demand point to its closest open facility is minimized. State-of-the-art solution approaches of pCP use its connection to the set cover problem to solve pCP in an iterative fashion by repeatedly solving set cover problems. The classical textbook integer programming (IP) formulation of pCP is usually dismissed due to its size and bad linear programming (LP)-relaxation bounds. We present a novel solution approach that works on a new IP formulation that can be obtained by a projection from the classical formulation. The formulation is solved by means of branch-and-cut, where cuts for demand points are iteratively generated. Moreover, the formulation can be strengthened with combinatorial information to obtain a much tighter LP-relaxation. In particular, we present a novel way to use lower bound information to obtain stronger cuts. We show that the LP-relaxation bound of our strengthened formulation has the same strength as the best known bound in literature, which is based on a semi-relaxation. Finally, we also present a computational study on instances from the literature with up to more than 700000 customers and locations. Our solution algorithm is competitive with highly sophisticated set-cover-based solution algorithms, which depend on various components and parameters.
We propose a dimension reduction technique for Bayesian inverse problems with nonlinear forward operators, non-Gaussian priors, and non-Gaussian observation noise. The likelihood function is approximated by a ridge function, i.e., a map which depends non-trivially only on a few linear combinations of the parameters. We build this ridge approximation by minimizing an upper bound on the Kullback--Leibler divergence between the posterior distribution and its approximation. This bound, obtained via logarithmic Sobolev inequalities, allows one to certify the error of the posterior approximation. Computing the bound requires computing the second moment matrix of the gradient of the log-likelihood function. In practice, a sample-based approximation of the upper bound is then required. We provide an analysis that enables control of the posterior approximation error due to this sampling. Numerical and theoretical comparisons with existing methods illustrate the benefits of the proposed methodology.
Sum-of-norms clustering is a popular convexification of $K$-means clustering. We show that, if the dataset is made of a large number of independent random variables distributed according to the uniform measure on the union of two disjoint balls of unit radius, and if the balls are sufficiently close to one another, then sum-of-norms clustering will typically fail to recover the decomposition of the dataset into two clusters. As the dimension tends to infinity, this happens even when the distance between the centers of the two balls is taken to be as large as $2\sqrt{2}$. In order to show this, we introduce and analyze a continuous version of sum-of-norms clustering, where the dataset is replaced by a general measure. In particular, we state and prove a local-global characterization of the clustering that seems to be new even in the case of discrete datapoints.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.