亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The training of deep residual neural networks (ResNets) with backpropagation has a memory cost that increases linearly with respect to the depth of the network. A way to circumvent this issue is to use reversible architectures. In this paper, we propose to change the forward rule of a ResNet by adding a momentum term. The resulting networks, momentum residual neural networks (Momentum ResNets), are invertible. Unlike previous invertible architectures, they can be used as a drop-in replacement for any existing ResNet block. We show that Momentum ResNets can be interpreted in the infinitesimal step size regime as second-order ordinary differential equations (ODEs) and exactly characterize how adding momentum progressively increases the representation capabilities of Momentum ResNets. Our analysis reveals that Momentum ResNets can learn any linear mapping up to a multiplicative factor, while ResNets cannot. In a learning to optimize setting, where convergence to a fixed point is required, we show theoretically and empirically that our method succeeds while existing invertible architectures fail. We show on CIFAR and ImageNet that Momentum ResNets have the same accuracy as ResNets, while having a much smaller memory footprint, and show that pre-trained Momentum ResNets are promising for fine-tuning models.

相關內容

動量方法 (Polyak, 1964) 旨在加速學習,特別是處理高曲率、小但一致的梯度,或是帶噪聲的梯度。 動量算法積累了之前梯度指數級衰減的移動平均,并且繼續沿該方向移動。

Despite the empirical success of deep learning, it still lacks theoretical understandings to explain why randomly initialized neural network trained by first-order optimization methods is able to achieve zero training loss, even though its landscape is non-convex and non-smooth. Recently, there are some works to demystifies this phenomenon under over-parameterized regime. In this work, we make further progress on this area by considering a commonly used momentum optimization algorithm: Nesterov accelerated method (NAG). We analyze the convergence of NAG for two-layer fully connected neural network with ReLU activation. Specifically, we prove that the error of NAG converges to zero at a linear convergence rate $1-\Theta(1/\sqrt{\kappa})$, where $\kappa > 1$ is determined by the initialization and the architecture of neural network. Comparing to the rate $1-\Theta(1/\kappa)$ of gradient descent, NAG achieves an acceleration. Besides, it also validates NAG and Heavy-ball method can achieve a similar convergence rate.

Feedforward neural networks are widely used as universal predictive models to fit data distribution. Common gradient-based learning, however, suffers from many drawbacks making the training process ineffective and time-consuming. Alternative randomized learning does not use gradients but selects hidden node parameters randomly. This makes the training process extremely fast. However, the problem in randomized learning is how to determine the random parameters. A recently proposed method uses autoencoders for unsupervised parameter learning. This method showed superior performance on classification tasks. In this work, we apply this method to regression problems, and, finding that it has some drawbacks, we show how to improve it. We propose a learning method of autoencoders that controls the produced random weights. We also propose how to determine the biases of hidden nodes. We empirically compare autoencoder based learning with other randomized learning methods proposed recently for regression and find that despite the proposed improvement of the autoencoder based learning, it does not outperform its competitors in fitting accuracy. Moreover, the method is much more complex than its competitors.

We define a persistent cohomology invariant called persistent cup-length which is able to extract non trivial information about the evolution of the cohomology ring structure across a filtration. We also devise algorithms for the computation of this invariant and we furthermore show that the persistent cup-length is 2-Lipschitz continuous with respect to the homotopy interleaving and Gromov-Hausdorff distances.

Despite the empirical success of using Adversarial Training to defend deep learning models against adversarial perturbations, so far, it still remains rather unclear what the principles are behind the existence of adversarial perturbations, and what adversarial training does to the neural network to remove them. In this paper, we present a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network; and more importantly, one of the goals of adversarial training is to remove such mixtures to purify hidden weights. We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly initialized gradient descent indeed satisfies this principle. Technically, we give, to the best of our knowledge, the first result proving that the following two can hold simultaneously for training a neural network with ReLU activation. (1) Training over the original data is indeed non-robust to small adversarial perturbations of some radius. (2) Adversarial training, even with an empirical perturbation algorithm such as FGM, can in fact be provably robust against ANY perturbations of the same radius. Finally, we also prove a complexity lower bound, showing that low complexity models such as linear classifiers, low-degree polynomials, or even the neural tangent kernel for this network, CANNOT defend against perturbations of this same radius, no matter what algorithms are used to train them.

Today, various forms of neural networks are trained to perform approximation tasks in many fields. However, the estimates obtained are not fully understood on function space. Empirical results suggest that typical training algorithms favor regularized solutions. These observations motivate us to analyze properties of the neural networks found by gradient descent initialized close to zero, that is frequently employed to perform the training task. As a starting point, we consider one dimensional (shallow) ReLU neural networks in which weights are chosen randomly and only the terminal layer is trained. First, we rigorously show that for such networks ridge regularized regression corresponds in function space to regularizing the estimate's second derivative for fairly general loss functionals. For least squares regression, we show that the trained network converges to the smooth spline interpolation of the training data as the number of hidden nodes tends to infinity. Moreover, we derive a correspondence between the early stopped gradient descent and the smoothing spline regression. Our analysis might give valuable insight on the properties of the solutions obtained using gradient descent methods in general settings.

Deep neural networks have relieved a great deal of burden on human experts in relation to feature engineering. However, comparable efforts are instead required to determine effective architectures. In addition, as the sizes of networks have grown overly large, a considerable amount of resources is also invested in reducing the sizes. The sparsification of an over-complete model addresses these problems as it removes redundant components and connections. In this study, we propose a fully differentiable sparsification method for deep neural networks which allows parameters to be zero during training via stochastic gradient descent. Thus, the proposed method can learn the sparsified structure and weights of a network in an end-to-end manner. The method is directly applicable to various modern deep neural networks and imposes minimum modification to existing models. To the best of our knowledge, this is the first fully [sub-]differentiable sparsification method that zeroes out parameters. It provides a foundation for future structure learning and model compression methods.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

In this paper, we propose a residual non-local attention network for high-quality image restoration. Without considering the uneven distribution of information in the corrupted images, previous methods are restricted by local convolutional operation and equal treatment of spatial- and channel-wise features. To address this issue, we design local and non-local attention blocks to extract features that capture the long-range dependencies between pixels and pay more attention to the challenging parts. Specifically, we design trunk branch and (non-)local mask branch in each (non-)local attention block. The trunk branch is used to extract hierarchical features. Local and non-local mask branches aim to adaptively rescale these hierarchical features with mixed attentions. The local mask branch concentrates on more local structures with convolutional operations, while non-local attention considers more about long-range dependencies in the whole feature map. Furthermore, we propose residual local and non-local attention learning to train the very deep network, which further enhance the representation ability of the network. Our proposed method can be generalized for various image restoration applications, such as image denoising, demosaicing, compression artifacts reduction, and super-resolution. Experiments demonstrate that our method obtains comparable or better results compared with recently leading methods quantitatively and visually.

For neural networks (NNs) with rectified linear unit (ReLU) or binary activation functions, we show that their training can be accomplished in a reduced parameter space. Specifically, the weights in each neuron can be trained on the unit sphere, as opposed to the entire space, and the threshold can be trained in a bounded interval, as opposed to the real line. We show that the NNs in the reduced parameter space are mathematically equivalent to the standard NNs with parameters in the whole space. The reduced parameter space shall facilitate the optimization procedure for the network training, as the search space becomes (much) smaller. We demonstrate the improved training performance using numerical examples.

北京阿比特科技有限公司