The goal of continual learning is to improve the performance of recognition models in learning sequentially arrived data. Although most existing works are established on the premise of learning from scratch, growing efforts have been devoted to incorporating the benefits of pre-training. However, how to adaptively exploit the pre-trained knowledge for each incremental task while maintaining its generalizability remains an open question. In this work, we present an extensive analysis for continual learning on a pre-trained model (CLPM), and attribute the key challenge to a progressive overfitting problem. Observing that selectively reducing the learning rate can almost resolve this issue in the representation layer, we propose a simple but extremely effective approach named Slow Learner with Classifier Alignment (SLCA), which further improves the classification layer by modeling the class-wise distributions and aligning the classification layers in a post-hoc fashion. Across a variety of scenarios, our proposal provides substantial improvements for CLPM (e.g., up to 49.76%, 50.05%, 44.69% and 40.16% on Split CIFAR-100, Split ImageNet-R, Split CUB-200 and Split Cars-196, respectively), and thus outperforms state-of-the-art approaches by a large margin. Based on such a strong baseline, critical factors and promising directions are analyzed in-depth to facilitate subsequent research. Code has been made available at: //github.com/GengDavid/SLCA.
Federated learning is a distributed machine learning system that uses participants' data to train an improved global model. In federated learning, participants cooperatively train a global model, and they will receive the global model and payments. Rational participants try to maximize their individual utility, and they will not input their high-quality data truthfully unless they are provided with satisfactory payments based on their data quality. Furthermore, federated learning benefits from the cooperative contributions of participants. Accordingly, how to establish an incentive mechanism that both incentivizes inputting data truthfully and promotes stable cooperation has become an important issue to consider. In this paper, we introduce a data sharing game model for federated learning and employ game-theoretic approaches to design a core-selecting incentive mechanism by utilizing a popular concept in cooperative games, the core. In federated learning, the core can be empty, resulting in the core-selecting mechanism becoming infeasible. To address this, our core-selecting mechanism employs a relaxation method and simultaneously minimizes the benefits of inputting false data for all participants. However, this mechanism is computationally expensive because it requires aggregating exponential models for all possible coalitions, which is infeasible in federated learning. To address this, we propose an efficient core-selecting mechanism based on sampling approximation that only aggregates models on sampled coalitions to approximate the exact result. Extensive experiments verify that the efficient core-selecting mechanism can incentivize inputting high-quality data and stable cooperation, while it reduces computational overhead compared to the core-selecting mechanism.
We present a novel learning-based trajectory generation algorithm for outdoor robot navigation. Our goal is to compute collision-free paths that also satisfy the environment-specific traversability constraints. Our approach is designed for global planning using limited onboard robot perception in mapless environments, while ensuring comprehensive coverage of all traversable directions. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model that is enhanced with traversability constraints and an optimization formulation used for the coverage. We highlight the benefits of our approach over state-of-the-art trajectory generation approaches and demonstrate its performance in challenging and large outdoor environments, including around buildings, across intersections, along trails, and off-road terrain, using a Clearpath Husky and a Boston Dynamics Spot robot. In practice, our approach results in a 6% improvement in coverage of traversable areas and an 89% reduction in trajectory portions residing in non-traversable regions. Our video is here: https: //youtu.be/OT0q4ccGHts
Participant selection (PS) helps to accelerate federated learning (FL) convergence, which is essential for the practical deployment of FL over mobile devices. While most existing PS approaches focus on improving training accuracy and efficiency rather than residual energy of mobile devices, which fundamentally determines whether the selected devices can participate. Meanwhile, the impacts of mobile devices' heterogeneous wireless transmission rates on PS and FL training efficiency are largely ignored. Moreover, PS causes the staleness issue. Prior research exploits isolated functions to force long-neglected devices to participate, which is decoupled from original PS designs. In this paper, we propose a residual energy and wireless aware PS design for efficient FL training over mobile devices (REWAFL). REW AFL introduces a novel PS utility function that jointly considers global FL training utilities and local energy utility, which integrates energy consumption and residual battery energy of candidate mobile devices. Under the proposed PS utility function framework, REW AFL further presents a residual energy and wireless aware local computing policy. Besides, REWAFL buries the staleness solution into its utility function and local computing policy. The experimental results show that REW AFL is effective in improving training accuracy and efficiency, while avoiding "flat battery" of mobile devices.
Deep learning models have demonstrated remarkable capabilities in learning complex patterns and concepts from training data. However, recent findings indicate that these models tend to rely heavily on simple and easily discernible features present in the background of images rather than the main concepts or objects they are intended to classify. This phenomenon poses a challenge to image classifiers as the crucial elements of interest in images may be overshadowed. In this paper, we propose a novel approach to address this issue and improve the learning of main concepts by image classifiers. Our central idea revolves around concurrently guiding the model's attention toward the foreground during the classification task. By emphasizing the foreground, which encapsulates the primary objects of interest, we aim to shift the focus of the model away from the dominant influence of the background. To accomplish this, we introduce a mechanism that encourages the model to allocate sufficient attention to the foreground. We investigate various strategies, including modifying the loss function or incorporating additional architectural components, to enable the classifier to effectively capture the primary concept within an image. Additionally, we explore the impact of different foreground attention mechanisms on model performance and provide insights into their effectiveness. Through extensive experimentation on benchmark datasets, we demonstrate the efficacy of our proposed approach in improving the classification accuracy of image classifiers. Our findings highlight the importance of foreground attention in enhancing model understanding and representation of the main concepts within images. The results of this study contribute to advancing the field of image classification and provide valuable insights for developing more robust and accurate deep-learning models.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.