亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For artificial deep neural networks, we prove expression rates for analytic functions $f:\mathbb{R}^d\to\mathbb{R}$ in the norm of $L^2(\mathbb{R}^d,\gamma_d)$ where $d\in {\mathbb{N}}\cup\{ \infty \}$. Here $\gamma_d$ denotes the Gaussian product probability measure on $\mathbb{R}^d$. We consider in particular ReLU and ReLU${}^k$ activations for integer $k\geq 2$. For $d\in\mathbb{N}$, we show exponential convergence rates in $L^2(\mathbb{R}^d,\gamma_d)$. In case $d=\infty$, under suitable smoothness and sparsity assumptions on $f:\mathbb{R}^{\mathbb{N}}\to\mathbb{R}$, with $\gamma_\infty$ denoting an infinite (Gaussian) product measure on $\mathbb{R}^{\mathbb{N}}$, we prove dimension-independent expression rate bounds in the norm of $L^2(\mathbb{R}^{\mathbb{N}},\gamma_\infty)$. The rates only depend on quantified holomorphy of (an analytic continuation of) the map $f$ to a product of strips in $\mathbb{C}^d$. As an application, we prove expression rate bounds of deep ReLU-NNs for response surfaces of elliptic PDEs with log-Gaussian random field inputs.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

We prove upper and lower bounds on the minimal spherical dispersion, improving upon previous estimates obtained by Rote and Tichy [Spherical dispersion with an application to polygonal approximation of curves, Anz. \"Osterreich. Akad. Wiss. Math.-Natur. Kl. 132 (1995), 3--10]. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, linear in the dimension $d$ of the ambient space. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere. In terms of the corresponding inverse $\widetilde{N}(\varepsilon,d)$, our bounds are optimal with respect to the dependence on $\varepsilon$.

We study the global convergence of policy gradient for infinite-horizon, continuous state and action space, entropy-regularized Markov decision processes (MDPs). We consider a softmax policy with (one-hidden layer) neural network approximation in a mean-field regime. Additional entropic regularization in the associated mean-field probability measure is added, and the corresponding gradient flow is studied in the 2-Wasserstein metric. We show that the objective function is increasing along the gradient flow. Further, we prove that if the regularization in terms of the mean-field measure is sufficient, the gradient flow converges exponentially fast to the unique stationary solution, which is the unique maximizer of the regularized MDP objective. Lastly, we study the sensitivity of the value function along the gradient flow with respect to regularization parameters and the initial condition. Our results rely on the careful analysis of non-linear Fokker--Planck--Kolmogorov equation and extend the pioneering work of Mei et al. 2020 and Agarwal et al. 2020, which quantify the global convergence rate of policy gradient for entropy-regularized MDPs in the tabular setting.

We show that solution to the Hermite-Pad\'{e} type I approximation problem leads in a natural way to a subclass of solutions of the Hirota (discrete Kadomtsev-Petviashvili) system and of its adjoint linear problem. Our result explains the appearence of various ingredients of the integrable systems theory in application to multiple orthogonal polynomials, numerical algorthms, random matrices, and in other branches of mathematical physics and applied mathematics where the Hermite-Pad\'{e} approximation problem is relevant. We present also the geometric algorithm, based on the notion of Desargues maps, of construction of solutions of the problem in the projective space over the field of rational functions. As a byproduct we obtain the corresponding generalization of the Wynn recurrence. We isolate the boundary data of the Hirota system which provide solutions to Hermite-Pad\'{e} problem showing that the corresponding reduction lowers dimensionality of the system. In particular, we obtain certain equations which, in addition to the known ones given by Paszkowski, can be considered as direct analogs of the Frobenius identities. We study the place of the reduced system within the integrability theory, which results in finding multidimensional (in the sense of number of variables) extension of the discrete-time Toda chain equations.

We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.

Weak lensing mass-mapping is a useful tool to access the full distribution of dark matter on the sky, but because of intrinsic galaxy ellipticies and finite fields/missing data, the recovery of dark matter maps constitutes a challenging ill-posed inverse problem. We introduce a novel methodology allowing for efficient sampling of the high-dimensional Bayesian posterior of the weak lensing mass-mapping problem, and relying on simulations for defining a fully non-Gaussian prior. We aim to demonstrate the accuracy of the method on simulations, and then proceed to applying it to the mass reconstruction of the HST/ACS COSMOS field. The proposed methodology combines elements of Bayesian statistics, analytic theory, and a recent class of Deep Generative Models based on Neural Score Matching. This approach allows us to do the following: 1) Make full use of analytic cosmological theory to constrain the 2pt statistics of the solution. 2) Learn from cosmological simulations any differences between this analytic prior and full simulations. 3) Obtain samples from the full Bayesian posterior of the problem for robust Uncertainty Quantification. We demonstrate the method on the $\kappa$TNG simulations and find that the posterior mean significantly outperfoms previous methods (Kaiser-Squires, Wiener filter, Sparsity priors) both on root-mean-square error and in terms of the Pearson correlation. We further illustrate the interpretability of the recovered posterior by establishing a close correlation between posterior convergence values and SNR of clusters artificially introduced into a field. Finally, we apply the method to the reconstruction of the HST/ACS COSMOS field and yield the highest quality convergence map of this field to date.

In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and non-local problems, as well as regularity properties of these solutions in time and space. We then derive error bounds between the solution to the non-local problem and that of the local one, both in continuous-time and Backward Euler time discretization. We then turn to studying continuum limits of non-local problems defined on random weighted graphs with $n$ vertices. In particular, we establish that if the kernel scale parameter decreases at an appropriate rate as $n$ grows, then almost surely, the solution of the problem on graphs converges uniformly to the viscosity solution of the local problem as the time step vanishes and the number vertices $n$ grows large.

In this paper, we introduce adaptive neuron enhancement (ANE) method for the best least-squares approximation using two-layer ReLU neural networks (NNs). For a given function f(x), the ANE method generates a two-layer ReLU NN and a numerical integration mesh such that the approximation accuracy is within the prescribed tolerance. The ANE method provides a natural process for obtaining a good initialization which is crucial for training nonlinear optimization problems. Numerical results of the ANE method are presented for functions of two variables exhibiting either intersecting interface singularities or sharp interior layers.

We study nonparametric Bayesian models for reversible multi-dimensional diffusions with periodic drift. For continuous observation paths, reversibility is exploited to prove a general posterior contraction rate theorem for the drift gradient vector field under approximation-theoretic conditions on the induced prior for the invariant measure. The general theorem is applied to Gaussian priors and $p$-exponential priors, which are shown to converge to the truth at the minimax optimal rate over Sobolev smoothness classes in any dimension

We construct several classes of neural networks with ReLU and BiSU (Binary Step Unit) activations, which exactly emulate the lowest order Finite Element (FE) spaces on regular, simplicial partitions of polygonal and polyhedral domains $\Omega \subset \mathbb{R}^d$, $d=2,3$. For continuous, piecewise linear (CPwL) functions, our constructions generalize previous results in that arbitrary, regular simplicial partitions of $\Omega$ are admitted, also in arbitrary dimension $d\geq 2$. Vector-valued elements emulated include the classical Raviart-Thomas and the first family of N\'{e}d\'{e}lec edge elements on triangles and tetrahedra. Neural Networks emulating these FE spaces are required in the correct approximation of boundary value problems of electromagnetism in nonconvex polyhedra $\Omega \subset \mathbb{R}^3$, thereby constituting an essential ingredient in the application of e.g. the methodology of ``physics-informed NNs'' or ``deep Ritz methods'' to electromagnetic field simulation via deep learning techniques. They satisfy exact (De Rham) sequence properties, and also spawn discrete boundary complexes on $\partial\Omega$ which satisfy exact sequence properties for the surface divergence and curl operators $\mathrm{div}_\Gamma$ and $\mathrm{curl}_\Gamma$, respectively, thereby enabling ``neural boundary elements'' for computational electromagnetism. We indicate generalizations of our constructions to higher-order compatible spaces and other, non-compatible classes of discretizations in particular the Crouzeix-Raviart elements and Hybridized, Higher Order (HHO) methods.

The Gromov-Hausdorff distance $(d_{GH})$ proves to be a useful distance measure between shapes. In order to approximate $d_{GH}$ for compact subsets $X,Y\subset\mathbb{R}^d$, we look into its relationship with $d_{H,iso}$, the infimum Hausdorff distance under Euclidean isometries. As already known for dimension $d\geq 2$, the $d_{H,iso}$ cannot be bounded above by a constant factor times $d_{GH}$. For $d=1$, however, we prove that $d_{H,iso}\leq\frac{5}{4}d_{GH}$. We also show that the bound is tight. In effect, this gives rise to an $O(n\log{n})$-time algorithm to approximate $d_{GH}$ with an approximation factor of $\left(1+\frac{1}{4}\right)$.

北京阿比特科技有限公司