亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given a target distribution $\pi$ and an arbitrary Markov infinitesimal generator $L$ on a finite state space $\mathcal{X}$, we develop three structured and inter-related approaches to generate new reversiblizations from $L$. The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of $\pi$-reversible generators under suitable information divergences such as $f$-divergences. With different choices of functions $f$, we not only recover nearly all established reversiblizations but also unravel and generate new reversiblizations. Along the way, we unveil interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This further serves as motivation for introducing the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means. In this second approach, we construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex $*$-conjugate in the study of $f$-divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.

相關內容

Let $G$ be a graph and $S\subseteq V(G)$ with $|S|\geq 2$. Then the trees $T_1, T_2, \cdots, T_\ell$ in $G$ are \emph{internally disjoint Steiner trees} connecting $S$ (or $S$-Steiner trees) if $E(T_i) \cap E(T_j )=\emptyset$ and $V(T_i)\cap V(T_j)=S$ for every pair of distinct integers $i,j$, $1 \leq i, j \leq \ell$. Similarly, if we only have the condition $E(T_i) \cap E(T_j )=\emptyset$ but without the condition $V(T_i)\cap V(T_j)=S$, then they are \emph{edge-disjoint Steiner trees}. The \emph{generalized $k$-connectivity}, denoted by $\kappa_k(G)$, of a graph $G$, is defined as $\kappa_k(G)=\min\{\kappa_G(S)|S \subseteq V(G) \ \textrm{and} \ |S|=k \}$, where $\kappa_G(S)$ is the maximum number of internally disjoint $S$-Steiner trees. The \emph{generalized local edge-connectivity} $\lambda_{G}(S)$ is the maximum number of edge-disjoint Steiner trees connecting $S$ in $G$. The {\it generalized $k$-edge-connectivity} $\lambda_k(G)$ of $G$ is defined as $\lambda_k(G)=\min\{\lambda_{G}(S)\,|\,S\subseteq V(G) \ and \ |S|=k\}$. These measures are generalizations of the concepts of connectivity and edge-connectivity, and they and can be used as measures of vulnerability of networks. It is, in general, difficult to compute these generalized connectivities. However, there are precise results for some special classes of graphs. In this paper, we obtain the exact value of $\lambda_{k}(S(n,\ell))$ for $3\leq k\leq \ell^n$, and the exact value of $\kappa_{k}(S(n,\ell))$ for $3\leq k\leq \ell$, where $S(n, \ell)$ is the Sierpi\'{n}ski graphs with order $\ell^n$. As a direct consequence, these graphs provide additional interesting examples when $\lambda_{k}(S(n,\ell))=\kappa_{k}(S(n,\ell))$. We also study the some network properties of Sierpi\'{n}ski graphs.

Brown and Walker (1997) showed that GMRES determines a least squares solution of $ A x = b $ where $ A \in {\bf R}^{n \times n} $ without breakdown for arbitrary $ b, x_0 \in {\bf R}^n $ if and only if $A$ is range-symmetric, i.e. $ {\cal R} (A^{\rm T}) = {\cal R} (A) $, where $ A $ may be singular and $ b $ may not be in the range space ${\cal R} A)$ of $A$. In this paper, we propose applying GMRES to $ A C A^{\rm T} z = b $, where $ C \in {\bf R}^{n \times n} $ is symmetric positive definite. This determines a least squares solution $ x = CA^{\rm T} z $ of $ A x = b $ without breakdown for arbitrary (singular) matrix $A \in {\bf R}^{n \times n}$ and $ b \in {\bf R}^n $. To make the method numerically stable, we propose using the pseudoinverse with an appropriate threshold parameter to suppress the influence of tiny singular values when solving the severely ill-conditioned Hessenberg systems which arise in the Arnoldi process of GMRES when solving inconsistent range-symmetric systems. Numerical experiments show that the method taking $C$ to be the identity matrix gives the least squares solution even when $A$ is not range-symmetric, including the case when $ {\rm index}(A) >1$.

Given a set of arms $\mathcal{Z}\subset \mathbb{R}^d$ and an unknown parameter vector $\theta_\ast\in\mathbb{R}^d$, the pure exploration linear bandit problem aims to return $\arg\max_{z\in \mathcal{Z}} z^{\top}\theta_{\ast}$, with high probability through noisy measurements of $x^{\top}\theta_{\ast}$ with $x\in \mathcal{X}\subset \mathbb{R}^d$. Existing (asymptotically) optimal methods require either a) potentially costly projections for each arm $z\in \mathcal{Z}$ or b) explicitly maintaining a subset of $\mathcal{Z}$ under consideration at each time. This complexity is at odds with the popular and simple Thompson Sampling algorithm for regret minimization, which just requires access to a posterior sampling and argmax oracle, and does not need to enumerate $\mathcal{Z}$ at any point. Unfortunately, Thompson sampling is known to be sub-optimal for pure exploration. In this work, we pose a natural question: is there an algorithm that can explore optimally and only needs the same computational primitives as Thompson Sampling? We answer the question in the affirmative. We provide an algorithm that leverages only sampling and argmax oracles and achieves an exponential convergence rate, with the exponent being the optimal among all possible allocations asymptotically. In addition, we show that our algorithm can be easily implemented and performs as well empirically as existing asymptotically optimal methods.

Let ${\mathcal P}$ be a family of probability measures on a measurable space $(S,{\mathcal A}).$ Given a Banach space $E,$ a functional $f:E\mapsto {\mathbb R}$ and a mapping $\theta: {\mathcal P}\mapsto E,$ our goal is to estimate $f(\theta(P))$ based on i.i.d. observations $X_1,\dots, X_n\sim P, P\in {\mathcal P}.$ In particular, if ${\mathcal P}=\{P_{\theta}: \theta\in \Theta\}$ is an identifiable statistical model with parameter set $\Theta\subset E,$ one can consider the mapping $\theta(P)=\theta$ for $P\in {\mathcal P}, P=P_{\theta},$ resulting in a problem of estimation of $f(\theta)$ based on i.i.d. observations $X_1,\dots, X_n\sim P_{\theta}, \theta\in \Theta.$ Given a smooth functional $f$ and estimators $\hat \theta_n(X_1,\dots, X_n), n\geq 1$ of $\theta(P),$ we use these estimators, the sample split and the Taylor expansion of $f(\theta(P))$ of a proper order to construct estimators $T_f(X_1,\dots, X_n)$ of $f(\theta(P)).$ For these estimators and for a functional $f$ of smoothness $s\geq 1,$ we prove upper bounds on the $L_p$-errors of estimator $T_f(X_1,\dots, X_n)$ under certain moment assumptions on the base estimators $\hat \theta_n.$ We study the performance of estimators $T_f(X_1,\dots, X_n)$ in several concrete problems, showing their minimax optimality and asymptotic efficiency. In particular, this includes functional estimation in high-dimensional models with many low dimensional components, functional estimation in high-dimensional exponential families and estimation of functionals of covariance operators in infinite-dimensional subgaussian models.

We address the computation of the degrees of minors of a noncommutative symbolic matrix of form \[ A[c] := \sum_{k=1}^m A_k t^{c_k} x_k, \] where $A_k$ are matrices over a field $\mathbb{K}$, $x_i$ are noncommutative variables, $c_k$ are integer weights, and $t$ is a commuting variable specifying the degree. This problem extends noncommutative Edmonds' problem (Ivanyos et al. 2017), and can formulate various combinatorial optimization problems. Extending the study by Hirai 2018, and Hirai, Ikeda 2022, we provide novel duality theorems and polyhedral characterization for the maximum degrees of minors of $A[c]$ of all sizes, and develop a strongly polynomial-time algorithm for computing them. This algorithm is viewed as a unified algebraization of the classical Hungarian method for bipartite matching and the weight-splitting algorithm for linear matroid intersection. As applications, we provide polynomial-time algorithms for weighted fractional linear matroid matching and linear optimization over rank-2 Brascamp-Lieb polytopes.

Suppose a finite, unweighted, combinatorial graph $G = (V,E)$ is the union of several (degree-)regular graphs which are then additionally connected with a few additional edges. $G$ will then have only a small number of vertices $v \in V$ with the property that one of their neighbors $(v,w) \in E$ has a higher degree $\mbox{deg}(w) > \mbox{deg}(v)$. We prove the converse statement: if a graph has few vertices having a neighbor with higher degree and satisfies a mild regularity condition, then, via adding and removing a few edges, the graph can be turned into a disjoint union of (distance-)regular graphs. The number of edge operations depends on the maximum degree and number of vertices with a higher degree neighbor but is independent of the size of $|V|$.

The Fast Fourier Transform (FFT) over a finite field $\mathbb{F}_q$ computes evaluations of a given polynomial of degree less than $n$ at a specifically chosen set of $n$ distinct evaluation points in $\mathbb{F}_q$. If $q$ or $q-1$ is a smooth number, then the divide-and-conquer approach leads to the fastest known FFT algorithms. Depending on the type of group that the set of evaluation points forms, these algorithms are classified as multiplicative (Math of Comp. 1965) and additive (FOCS 2014) FFT algorithms. In this work, we provide a unified framework for FFT algorithms that include both multiplicative and additive FFT algorithms as special cases, and beyond: our framework also works when $q+1$ is smooth, while all known results require $q$ or $q-1$ to be smooth. For the new case where $q+1$ is smooth (this new case was not considered before in literature as far as we know), we show that if $n$ is a divisor of $q+1$ that is $B$-smooth for a real $B>0$, then our FFT needs $O(Bn\log n)$ arithmetic operations in $\mathbb{F}_q$. Our unified framework is a natural consequence of introducing the algebraic function fields into the study of FFT.

A periodic temporal graph $\mathcal{G}=(G_0, G_1, \dots, G_{p-1})^*$ is an infinite periodic sequence of graphs $G_i=(V,E_i)$ where $G=(V,\cup_i E_i)$ is called the footprint. Recently, the arena where the Cops and Robber game is played has been extended from a graph to a periodic graph; in this case, the copnumber is also the minimum number of cops sufficient for capturing the robber. We study the connections and distinctions between the copnumber $c(\mathcal{G})$ of a periodic graph $\mathcal{G}$ and the copnumber $c(G)$ of its footprint $G$ and establish several facts. For instance, we show that the smallest periodic graph with $c(\mathcal{G}) = 3$ has at most $8$ nodes; in contrast, the smallest graph $G$ with $c(G) = 3$ has $10$ nodes. We push this investigation by generating multiple examples showing how the copnumbers of a periodic graph $\mathcal{G}$, the subgraphs $G_i$ and its footprint $G$ can be loosely tied. Based on these results, we derive upper bounds on the copnumber of a periodic graph from properties of its footprint such as its treewidth.

We give a strongly explicit construction of $\varepsilon$-approximate $k$-designs for the orthogonal group $\mathrm{O}(N)$ and the unitary group $\mathrm{U}(N)$, for $N=2^n$. Our designs are of cardinality $\mathrm{poly}(N^k/\varepsilon)$ (equivalently, they have seed length $O(nk + \log(1/\varepsilon)))$; up to the polynomial, this matches the number of design elements used by the construction consisting of completely random matrices.

A code $C \subseteq \{0, 1, 2\}^n$ of length $n$ is called trifferent if for any three distinct elements of $C$ there exists a coordinate in which they all differ. By $T(n)$ we denote the maximum cardinality of trifferent codes with length. $T(5)=10$ and $T(6)=13$ were recently determined. Here we determine $T(7)=16$, $T(8)=20$, and $T(9)=27$. For the latter case $n=9$ there also exist linear codes attaining the maximum possible cardinality $27$.

北京阿比特科技有限公司