亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Building simulation environments for developing and testing autonomous vehicles necessitates that the simulators accurately model the statistical realism of the real-world environment, including the interaction with other vehicles driven by human drivers. To address this requirement, an accurate human behavior model is essential to incorporate the diversity and consistency of human driving behavior. We propose a mathematical framework for designing a data-driven simulation model that simulates human driving behavior more realistically than the currently used physics-based simulation models. Experiments conducted using the NGSIM dataset validate our hypothesis regarding the necessity of considering the complexity, diversity, and consistency of human driving behavior when aiming to develop realistic simulators.

相關內容

Graphics processing units (GPUs) are continually evolving to cater to the computational demands of contemporary general-purpose workloads, particularly those driven by artificial intelligence (AI) utilizing deep learning techniques. A substantial body of studies have been dedicated to dissecting the microarchitectural metrics characterizing diverse GPU generations, which helps researchers understand the hardware details and leverage them to optimize the GPU programs. However, the latest Hopper GPUs present a set of novel attributes, including new tensor cores supporting FP8, DPX, and distributed shared memory. Their details still remain mysterious in terms of performance and operational characteristics. In this research, we propose an extensive benchmarking study focused on the Hopper GPU. The objective is to unveil its microarchitectural intricacies through an examination of the new instruction-set architecture (ISA) of Nvidia GPUs and the utilization of new CUDA APIs. Our approach involves two main aspects. Firstly, we conduct conventional latency and throughput comparison benchmarks across the three most recent GPU architectures, namely Hopper, Ada, and Ampere. Secondly, we delve into a comprehensive discussion and benchmarking of the latest Hopper features, encompassing the Hopper DPX dynamic programming (DP) instruction set, distributed shared memory, and the availability of FP8 tensor cores. The microbenchmarking results we present offer a deeper understanding of the novel GPU AI function units and programming features introduced by the Hopper architecture. This newfound understanding is expected to greatly facilitate software optimization and modeling efforts for GPU architectures. To the best of our knowledge, this study makes the first attempt to demystify the tensor core performance and programming instruction sets unique to Hopper GPUs.

When constructing parametric models to predict the cost of future claims, several important details have to be taken into account: (i) models should be designed to accommodate deductibles, policy limits, and coinsurance factors, (ii) parameters should be estimated robustly to control the influence of outliers on model predictions, and (iii) all point predictions should be augmented with estimates of their uncertainty. The methodology proposed in this paper provides a framework for addressing all these aspects simultaneously. Using payment-per-payment and payment-per-loss variables, we construct the adaptive version of method of winsorized moments (MWM) estimators for the parameters of truncated and censored lognormal distribution. Further, the asymptotic distributional properties of this approach are derived and compared with those of the maximum likelihood estimator (MLE) and method of trimmed moments (MTM) estimators. The latter being a primary competitor to MWM. Moreover, the theoretical results are validated with extensive simulation studies and risk measure sensitivity analysis. Finally, practical performance of these methods is illustrated using the well-studied data set of 1500 U.S. indemnity losses. With this real data set, it is also demonstrated that the composite models do not provide much improvement in the quality of predictive models compared to a stand-alone fitted distribution specially for truncated and censored sample data.

Multi-agent reinforcement learning (MARL) is well-suited for runtime decision-making in optimizing the performance of systems where multiple agents coexist and compete for shared resources. However, applying common deep learning-based MARL solutions to real-world problems suffers from issues of interpretability, sample efficiency, partial observability, etc. To address these challenges, we present an event-driven formulation, where decision-making is handled by distributed co-operative MARL agents using neuro-symbolic methods. The recently introduced neuro-symbolic Logical Neural Networks (LNN) framework serves as a function approximator for the RL, to train a rules-based policy that is both logical and interpretable by construction. To enable decision-making under uncertainty and partial observability, we developed a novel probabilistic neuro-symbolic framework, Probabilistic Logical Neural Networks (PLNN), which combines the capabilities of logical reasoning with probabilistic graphical models. In PLNN, the upward/downward inference strategy, inherited from LNN, is coupled with belief bounds by setting the activation function for the logical operator associated with each neural network node to a probability-respecting generalization of the Fr\'echet inequalities. These PLNN nodes form the unifying element that combines probabilistic logic and Bayes Nets, permitting inference for variables with unobserved states. We demonstrate our contributions by addressing key MARL challenges for power sharing in a system-on-chip application.

Autonomous vehicle platforms of varying spatial scales are employed within the research and development spectrum based on space, safety and monetary constraints. However, deploying and validating autonomy algorithms across varying operational scales presents challenges due to scale-specific dynamics, sensor integration complexities, computational constraints, regulatory considerations, environmental variability, interaction with other traffic participants and scalability concerns. In such a milieu, this work focuses on developing a unified framework for modeling and simulating digital twins of autonomous vehicle platforms across different scales and operational design domains (ODDs) to help support the streamlined development and validation of autonomy software stacks. Particularly, this work discusses the development of digital twin representations of 4 autonomous ground vehicles, which span across 3 different scales and target 3 distinct ODDs. We study the adoption of these autonomy-oriented digital twins to deploy a common autonomy software stack with an aim of end-to-end map-based navigation to achieve the ODD-specific objective(s) for each vehicle. Finally, we also discuss the flexibility of the proposed framework to support virtual, hybrid as well as physical testing with seamless sim2real transfer.

Although robust statistical estimators are less affected by outlying observations, their computation is usually more challenging. This is particularly the case in high-dimensional sparse settings. The availability of new optimization procedures, mainly developed in the computer science domain, offers new possibilities for the field of robust statistics. This paper investigates how such procedures can be used for robust sparse association estimators. The problem can be split into a robust estimation step followed by an optimization for the remaining decoupled, (bi-)convex problem. A combination of the augmented Lagrangian algorithm and adaptive gradient descent is implemented to also include suitable constraints for inducing sparsity. We provide results concerning the precision of the algorithm and show the advantages over existing algorithms in this context. High-dimensional empirical examples underline the usefulness of this procedure. Extensions to other robust sparse estimators are possible.

Recent developments enable the quantification of causal control given a structural causal model (SCM). This has been accomplished by introducing quantities which encode changes in the entropy of one variable when intervening on another. These measures, named causal entropy and causal information gain, aim to address limitations in existing information theoretical approaches for machine learning tasks where causality plays a crucial role. They have not yet been properly mathematically studied. Our research contributes to the formal understanding of the notions of causal entropy and causal information gain by establishing and analyzing fundamental properties of these concepts, including bounds and chain rules. Furthermore, we elucidate the relationship between causal entropy and stochastic interventions. We also propose definitions for causal conditional entropy and causal conditional information gain. Overall, this exploration paves the way for enhancing causal machine learning tasks through the study of recently-proposed information theoretic quantities grounded in considerations about causality.

The creation of accurate virtual models of real-world objects is imperative to robotic simulations and applications such as computer vision, artificial intelligence, and machine learning. This paper documents the different methods employed for generating a database of mesh models of real-world objects. These methods address the tedious and time-intensive process of manually generating the models using CAD software. Essentially, DSLR/phone cameras were employed to acquire images of target objects. These images were processed using a photogrammetry software known as Meshroom to generate a dense surface reconstruction of the scene. The result produced by Meshroom was edited and simplified using MeshLab, a mesh-editing software to produce the final model. Based on the obtained models, this process was effective in modelling the geometry and texture of real-world objects with high fidelity. An active 3D scanner was also utilized to accelerate the process for large objects. All generated models and captured images are made available on the website of the project.

SRAM bitcells in retention mode behave as autonomous stochastic nonlinear dynamical systems. From observation of variability-aware transient noise simulations, we provide an unidimensional model, fully characterizable by conventional deterministic SPICE simulations, insightfully explaining the mechanism of intrinsic noise-induced bit flips. The proposed model is exploited to, first, explain the reported inaccuracy of existing closed-form near-equilibrium formulas aimed at predicting the mean time to failure and, secondly, to propose a closer estimate attractive in terms of CPU time.

We introduce a novel concept of convergence for Markovian processes within Orlicz spaces, extending beyond the conventional approach associated with $L_p$ spaces. After showing that Markovian operators are contractive in Orlicz spaces, our key technical contribution is an upper bound on their contraction coefficient, which admits a closed-form expression. The bound is tight in some settings, and it recovers well-known results, such as the connection between contraction and ergodicity, ultra-mixing and Doeblin's minorisation. Specialising our approach to $L_p$ spaces leads to a significant improvement upon classical Riesz-Thorin's interpolation methods. Furthermore, by exploiting the flexibility offered by Orlicz spaces, we can tackle settings where the stationary distribution is heavy-tailed, a severely under-studied setup. As an application of the framework put forward in the paper, we introduce tighter bounds on the mixing time of Markovian processes, better exponential concentration bounds for MCMC methods, and better lower bounds on the burn-in period. To conclude, we show how our results can be used to prove the concentration of measure phenomenon for a sequence of Markovian random variables.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司