Industry 4.0 aims at shaking the current manufacturing landscape by leveraging the adoption of smart industrial equipment with increased connectivity, sensing, and actuation capabilities. By exploring access to real-time production information and advanced remote control features, servitization of manufacturing firms promises novel added value services for industrial operators and customers. On the other hand, industrial networks would face a transformation process in order to support the flexibility expected by the next-generation manufacturing processes and enable inter-factory cooperation. In this scenario, the 5G systems can play a key role in enabling Industry 4.0 by extending the network slicing paradigm to specifically support the requirements of industrial use cases over heterogeneous domains. We present a novel 5G-based network slicing framework which aims at accommodating the requirements of Industry 4.0. To interconnect different industrial sites up to the extreme edge, different slices of logical resources can be instantiated on-demand to provide the required end-to-end connectivity and processing features. We validate our proposed framework in three realistic use cases which enabled us highlight the envisioned benefits for industrial stakeholders.
Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications such as augmented reality, multiplayer gaming, and industrial automation. While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast cloud network flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing cloud network control techniques.
Consistent motion estimation is fundamental for all mobile autonomous systems. While this sounds like an easy task, often, it is not the case because of changing environmental conditions affecting odometry obtained from vision, Lidar, or the wheels themselves. Unsusceptible to challenging lighting and weather conditions, radar sensors are an obvious alternative. Usually, automotive radars return a sparse point cloud, representing the surroundings. Utilizing this information to motion estimation is challenging due to unstable and phantom measurements, which result in a high rate of outliers. We introduce a credible and robust probabilistic approach to estimate the ego-motion based on these challenging radar measurements; intended to be used within a loosely-coupled sensor fusion framework. Compared to existing solutions, evaluated on the popular nuScenes dataset and others, we show that our proposed algorithm is more credible while not depending on explicit correspondence calculation.
When IP-packet processing is unconditionally carried out on behalf of an operating system kernel thread, processing systems can experience overload in high incoming traffic scenarios. This is especially worrying for embedded real-time devices controlling their physical environment in industrial IoT scenarios and automotive systems. We propose an embedded real-time aware IP stack adaption with an early demultiplexing scheme for incoming packets and subsequent per-flow aperiodic scheduling. By instrumenting existing embedded IP stacks, rigid prioritization with minimal latency is deployed without the need of further task resources. Simple mitigation techniques can be applied to individual flows, causing hardly measurable overhead while at the same time protecting the system from overload conditions. Our IP stack adaption is able to reduce the low-priority packet processing time by over 86% compared to an unmodified stack. The network subsystem can thereby remain active at a 7x higher general traffic load before disabling the receive IRQ as a last resort to assure deadlines.
Embodied AI is a recent research area that aims at creating intelligent agents that can move and operate inside an environment. Existing approaches in this field demand the agents to act in completely new and unexplored scenes. However, this setting is far from realistic use cases that instead require executing multiple tasks in the same environment. Even if the environment changes over time, the agent could still count on its global knowledge about the scene while trying to adapt its internal representation to the current state of the environment. To make a step towards this setting, we propose Spot the Difference: a novel task for Embodied AI where the agent has access to an outdated map of the environment and needs to recover the correct layout in a fixed time budget. To this end, we collect a new dataset of occupancy maps starting from existing datasets of 3D spaces and generating a number of possible layouts for a single environment. This dataset can be employed in the popular Habitat simulator and is fully compliant with existing methods that employ reconstructed occupancy maps during navigation. Furthermore, we propose an exploration policy that can take advantage of previous knowledge of the environment and identify changes in the scene faster and more effectively than existing agents. Experimental results show that the proposed architecture outperforms existing state-of-the-art models for exploration on this new setting.
Enterprise cloud developers have to build applications that are resilient to failures and interruptions. We advocate for, formalize, implement, and evaluate a simple, albeit effective, fault-tolerant programming model for the cloud based on actors, reliable message delivery, and retry orchestration. Our model simultaneously guarantees that (1) failed actor invocations are retried until success and (2) that a strict happens before relationship is preserved across failures within each distributed chain of invocations and retries. These guarantees make it possible to productively develop fault-tolerant distributed applications leveraging cloud services, ranging from classic problems of concurrency theory to enterprise applications. Built as a service mesh, our runtime can compose application components written in any programming language and scale with the application. We measure overhead relative to reliable message queues. Using an application inspired by a typical enterprise scenario, we assess fault tolerance and the impact of fault recovery on performance.
The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.
With the growing advances in the Internet of Things (IoT) technology, IoT device management platforms are becoming increasingly important. We conducted a web-based survey and usability study with 43 participants who use IoT devices frequently to: 1) examine their smart home IoT usage patterns and privacy preferences, and 2) evaluate a web-based prototype for smart home IoT device management. We found that participants perceived privacy as more important than the convenience afforded by the IoT devices. Based on their average scores of privacy vs. convenience importance, participants with low privacy and low convenience significantly reported less privacy control and convenience preferences than participants with high privacy and high convenience. Overall, all participants were satisfied with the proposed website prototype and their actual usability evaluation demonstrated a good understanding of the website features. This paper provides an empirical examination of the privacy versus convenience trade-offs smart home users make when managing their IoT devices.
The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.
Advanced wearable devices are increasingly incorporating high-resolution multi-camera systems. As state-of-the-art neural networks for processing the resulting image data are computationally demanding, there has been growing interest in leveraging fifth generation (5G) wireless connectivity and mobile edge computing for offloading this processing to the cloud. To assess this possibility, this paper presents a detailed simulation and evaluation of 5G wireless offloading for object detection within a powerful, new smart wearable called VIS4ION, for the Blind-and-Visually Impaired (BVI). The current VIS4ION system is an instrumented book-bag with high-resolution cameras, vision processing and haptic and audio feedback. The paper considers uploading the camera data to a mobile edge cloud to perform real-time object detection and transmitting the detection results back to the wearable. To determine the video requirements, the paper evaluates the impact of video bit rate and resolution on object detection accuracy and range. A new street scene dataset with labeled objects relevant to BVI navigation is leveraged for analysis. The vision evaluation is combined with a detailed full-stack wireless network simulation to determine the distribution of throughputs and delays with real navigation paths and ray-tracing from new high-resolution 3D models in an urban environment. For comparison, the wireless simulation considers both a standard 4G-Long Term Evolution (LTE) carrier and high-rate 5G millimeter-wave (mmWave) carrier. The work thus provides a thorough and realistic assessment of edge computing with mmWave connectivity in an application with both high bandwidth and low latency requirements.
Microservices have become the de-facto software architecture for cloud-native applications. A contentious architectural decision in microservices is to compose them using choreography or orchestration. In choreography, every service works independently, whereas, in orchestration, there is a controller that coordinates service interactions. This paper makes a case for orchestration. The promise of microservices is that each microservice can be independently developed, deployed, tested, upgraded, and scaled. This makes them suitable for systems running on cloud infrastructures. However, microservice-based systems become complicated due to the complex interactions of various services, concurrent events, failing components, developers' lack of global view, and configurations of the environment. This makes maintaining and debugging such systems very challenging. We hypothesize that orchestrated services are easier to debug and to test this we ported the largest publicly available microservices' benchmark TrainTicket, which is implemented using choreography, to a fault-oblivious stateful workflow framework Temporal. We report our experience in porting the code from traditional choreographed microservice architecture to one orchestrated by Temporal and present our initial findings of time to debug the 22 bugs present in the benchmark. Our findings suggest that an effort towards making a transition to orchestrated approach is worthwhile, making the ported code easier to debug.