亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Continual learning addresses the problem of continuously acquiring and transferring knowledge without catastrophic forgetting of old concepts. While humans achieve continual learning via diverse neurocognitive mechanisms, there is a mismatch between cognitive properties and evaluation methods of continual learning models. First, the measurement of continual learning models mostly relies on evaluation metrics at a micro-level, which cannot characterize cognitive capacities of the model. Second, the measurement is method-specific, emphasizing model strengths in one aspect while obscuring potential weaknesses in other respects. To address these issues, we propose to integrate model cognitive capacities and evaluation metrics into a unified evaluation paradigm. We first characterize model capacities via desiderata derived from cognitive properties supporting human continual learning. The desiderata concern (1) adaptability in varying lengths of task sequence; (2) sensitivity to dynamic task variations; and (3) efficiency in memory usage and training time consumption. Then we design evaluation protocols for each desideratum to assess cognitive capacities of recent continual learning models. Experimental results show that no method we consider has satisfied all the desiderata and is still far away from realizing truly continual learning. Although some methods exhibit some degree of adaptability and efficiency, no method is able to identify task relationships when encountering dynamic task variations, or achieve a trade-off in learning similarities and differences between tasks. Inspired by these results, we discuss possible factors that influence model performance in these desiderata and provide guidance for the improvement of continual learning models.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Embedding methods transform the knowledge graph into a continuous, low-dimensional space, facilitating inference and completion tasks. Existing methods are mainly divided into two types: translational distance models and semantic matching models. A key challenge in translational distance models is their inability to effectively differentiate between 'head' and 'tail' entities in graphs. To address this problem, a novel location-sensitive embedding (LSE) method has been developed. LSE innovatively modifies the head entity using relation-specific mappings, conceptualizing relations as linear transformations rather than mere translations. The theoretical foundations of LSE, including its representational capabilities and its connections to existing models, have been thoroughly examined. A more streamlined variant, LSE-d, which employs a diagonal matrix for transformations to enhance practical efficiency, is also proposed. Experiments conducted on four large-scale KG datasets for link prediction show that LSEd either outperforms or is competitive with state-of-the-art related works.

Advances in reinforcement learning (RL) often rely on massive compute resources and remain notoriously sample inefficient. In contrast, the human brain is able to efficiently learn effective control strategies using limited resources. This raises the question whether insights from neuroscience can be used to improve current RL methods. Predictive processing is a popular theoretical framework which maintains that the human brain is actively seeking to minimize surprise. We show that recurrent neural networks which predict their own sensory states can be leveraged to minimise surprise, yielding substantial gains in cumulative reward. Specifically, we present the Predictive Processing Proximal Policy Optimization (P4O) agent; an actor-critic reinforcement learning agent that applies predictive processing to a recurrent variant of the PPO algorithm by integrating a world model in its hidden state. Even without hyperparameter tuning, P4O significantly outperforms a baseline recurrent variant of the PPO algorithm on multiple Atari games using a single GPU. It also outperforms other state-of-the-art agents given the same wall-clock time and exceeds human gamer performance on multiple games including Seaquest, which is a particularly challenging environment in the Atari domain. Altogether, our work underscores how insights from the field of neuroscience may support the development of more capable and efficient artificial agents.

Differential privacy has emerged as an significant cornerstone in the realm of scientific hypothesis testing utilizing confidential data. In reporting scientific discoveries, Bayesian tests are widely adopted since they effectively circumnavigate the key criticisms of P-values, namely, lack of interpretability and inability to quantify evidence in support of the competing hypotheses. We present a novel differentially private Bayesian hypotheses testing framework that arise naturally under a principled data generative mechanism, inherently maintaining the interpretability of the resulting inferences. Furthermore, by focusing on differentially private Bayes factors based on widely used test statistics, we circumvent the need to model the complete data generative mechanism and ensure substantial computational benefits. We also provide a set of sufficient conditions to establish results on Bayes factor consistency under the proposed framework. The utility of the devised technology is showcased via several numerical experiments.

While large language models (LLMs) have enabled learning knowledge from the pre-training corpora, the acquired knowledge may be fundamentally incorrect or outdated over time, which necessitates rectifying the knowledge of the language model (LM) after the training. A promising approach involves employing a hyper-network to generate parameter shift, whereas existing hyper-networks suffer from inferior scalability in synchronous editing operation amount. To mitigate the problem, we propose the MAssive Language Model Editing Network (MALMEN), which formulates the parameter shift aggregation as the least square problem, subsequently updating the LM parameters using the normal equation. To accommodate editing multiple facts simultaneously with limited memory budgets, we separate the computation on the hyper-network and LM, enabling arbitrary batch size on both neural networks. Our method is evaluated by editing up to thousands of facts on LMs with different architectures, i.e., BERT-base, GPT-2, T5-XL (2.8B), and GPT-J (6B), across various knowledge-intensive NLP tasks, i.e., closed book fact-checking and question answering. Remarkably, MALMEN is capable of editing hundreds of times more facts than strong baselines with the identical hyper-network architecture and outperforms editor specifically designed for GPT. Our code is available at //github.com/ChenmienTan/malmen.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司