亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider the problem of determining the presence of a given signal in a high-dimensional observation with unknown covariance matrix by using an adaptive matched filter. Traditionally such filters are formed from the sample covariance matrix of some given training data, but, as is well-known, the performance of such filters is poor when the number of training data $n$ is not much larger than the data dimension $p$. We thus seek a covariance estimator to replace sample covariance. To account for the fact that $n$ and $p$ may be of comparable size, we adopt the "large-dimensional asymptotic model" in which $n$ and $p$ go to infinity in a fixed ratio. Under this assumption, we identify a covariance estimator that is asymptotically detection-theoretic optimal within a general shrinkage class inspired by C. Stein, and we give consistent estimates for conditional false-alarm and detection rate of the corresponding adaptive matched filter.

相關內容

In high-dimensional regression, we attempt to estimate a parameter vector $\beta_0\in\mathbb{R}^p$ from $n\lesssim p$ observations $\{(y_i,x_i)\}_{i\leq n}$ where $x_i\in\mathbb{R}^p$ is a vector of predictors and $y_i$ is a response variable. A well-established approach uses convex regularizers to promote specific structures (e.g. sparsity) of the estimate $\widehat{\beta}$, while allowing for practical algorithms. Theoretical analysis implies that convex penalization schemes have nearly optimal estimation properties in certain settings. However, in general the gaps between statistically optimal estimation (with unbounded computational resources) and convex methods are poorly understood. We show that when the statistican has very simple structural information about the distribution of the entries of $\beta_0$, a large gap frequently exists between the best performance achieved by any convex regularizer satisfying a mild technical condition and either (i) the optimal statistical error or (ii) the statistical error achieved by optimal approximate message passing algorithms. Remarkably, a gap occurs at high enough signal-to-noise ratio if and only if the distribution of the coordinates of $\beta_0$ is not log-concave. These conclusions follow from an analysis of standard Gaussian designs. Our lower bounds are expected to be generally tight, and we prove tightness under certain conditions.

Being able to reliably assess not only the accuracy but also the uncertainty of models' predictions is an important endeavour in modern machine learning. Even if the model generating the data and labels is known, computing the intrinsic uncertainty after learning the model from a limited number of samples amounts to sampling the corresponding posterior probability measure. Such sampling is computationally challenging in high-dimensional problems and theoretical results on heuristic uncertainty estimators in high-dimensions are thus scarce. In this manuscript, we characterise uncertainty for learning from limited number of samples of high-dimensional Gaussian input data and labels generated by the probit model. We prove that the Bayesian uncertainty (i.e. the posterior marginals) can be asymptotically obtained by the approximate message passing algorithm, bypassing the canonical but costly Monte Carlo sampling of the posterior. We then provide a closed-form formula for the joint statistics between the logistic classifier, the uncertainty of the statistically optimal Bayesian classifier and the ground-truth probit uncertainty. The formula allows us to investigate calibration of the logistic classifier learning from limited amount of samples. We discuss how over-confidence can be mitigated by appropriately regularising, and show that cross-validating with respect to the loss leads to better calibration than with the 0/1 error.

We consider the problem of estimating high-dimensional covariance matrices of $K$-populations or classes in the setting where the sample sizes are comparable to the data dimension. We propose estimating each class covariance matrix as a distinct linear combination of all class sample covariance matrices. This approach is shown to reduce the estimation error when the sample sizes are limited, and the true class covariance matrices share a somewhat similar structure. We develop an effective method for estimating the coefficients in the linear combination that minimize the mean squared error under the general assumption that the samples are drawn from (unspecified) elliptically symmetric distributions possessing finite fourth-order moments. To this end, we utilize the spatial sign covariance matrix, which we show (under rather general conditions) to be an asymptotically unbiased estimator of the normalized covariance matrix as the dimension grows to infinity. We also show how the proposed method can be used in choosing the regularization parameters for multiple target matrices in a single class covariance matrix estimation problem. We assess the proposed method via numerical simulation studies including an application in global minimum variance portfolio optimization using real stock data.

We consider an elliptic linear-quadratic parameter estimation problem with a finite number of parameters. A novel a priori bound for the parameter error is proved and, based on this bound, an adaptive finite element method driven by an a posteriori error estimator is presented. Unlike prior results in the literature, our estimator, which is composed of standard energy error residual estimators for the state equation and suitable co-state problems, reflects the faster convergence of the parameter error compared to the (co)-state variables. We show optimal convergence rates of our method; in particular and unlike prior works, we prove that the estimator decreases with a rate that is the sum of the best approximation rates of the state and co-state variables. Experiments confirm that our method matches the convergence rate of the parameter error.

We first revisit the problem of estimating the spot volatility of an It\^o semimartingale using a kernel estimator. We prove a Central Limit Theorem with optimal convergence rate for a general two-sided kernel. Next, we introduce a new pre-averaging/kernel estimator for spot volatility to handle the microstructure noise of ultra high-frequency observations. We prove a Central Limit Theorem for the estimation error with an optimal rate and study the optimal selection of the bandwidth and kernel functions. We show that the pre-averaging/kernel estimator's asymptotic variance is minimal for exponential kernels, hence, justifying the need of working with kernels of unbounded support as proposed in this work. We also develop a feasible implementation of the proposed estimators with optimal bandwidth. Monte Carlo experiments confirm the superior performance of the devised method.

Many experiments record sequential trajectories where each trajectory consists of oscillations and fluctuations around zero. Such trajectories can be viewed as zero-mean functional data. When there are structural breaks (on the sequence of trajectories) in higher order moments, it is not always easy to spot these by mere visual inspection. Motivated by this challenging problem in brain signal analysis, we propose a detection and testing procedure to find the change point in functional covariance. The detection procedure is based on the cumulative sum statistics (CUSUM). The classical testing procedure for functional data depends on a null distribution which depends on infinitely many unknown parameters, though in practice only a finite number of these can be included for the hypothesis test of the existence of change point. This paper provides some theoretical insights on the influence of the number of parameters. Meanwhile, the asymptotic properties of the estimated change point are developed. The effectiveness of the proposed method is numerically validated in simulation studies and an application to investigate changes in rat brain signals following an experimentally-induced stroke.

We consider the problem of high-dimensional Ising model selection using neighborhood-based least absolute shrinkage and selection operator (Lasso). It is rigorously proved that under some mild coherence conditions on the population covariance matrix of the Ising model, consistent model selection can be achieved with sample sizes $n=\Omega{(d^3\log{p})}$ for any tree-like graph in the paramagnetic phase, where $p$ is the number of variables and $d$ is the maximum node degree. The obtained sufficient conditions for consistent model selection with Lasso are the same in the scaling of the sample complexity as that of $\ell_1$-regularized logistic regression.

We propose the Terminating-Knockoff (T-Knock) filter, a fast variable selection method for high-dimensional data. The T-Knock filter controls a user-defined target false discovery rate (FDR) while maximizing the number of selected variables. This is achieved by fusing the solutions of multiple early terminated random experiments. The experiments are conducted on a combination of the original predictors and multiple sets of randomly generated knockoff predictors. A finite sample proof based on martingale theory for the FDR control property is provided. Numerical simulations show that the FDR is controlled at the target level while allowing for a high power. We prove under mild conditions that the knockoffs can be sampled from any univariate probability distribution with existing finite expectation and variance. The computational complexity of the proposed method is derived and it is demonstrated via numerical simulations that the sequential computation time is multiple orders of magnitude lower than that of the strongest benchmark methods in sparse high-dimensional settings. The T-Knock filter outperforms state-of-the-art methods for FDR control on a simulated genome-wide association study (GWAS), while its computation time is more than two orders of magnitude lower than that of the strongest benchmark methods. An open source R package containing the implementation of the T-Knock filter is available at //github.com/jasinmachkour/tknock.

While in recent years a number of new statistical approaches have been proposed to model group differences with a different assumption on the nature of the measurement invariance of the instruments, the tools for detecting local misspecifications of these models have not been fully developed yet. In this study, we present a novel approach using a Deep Neural Network (DNN). We compared the proposed model with the most popular traditional methods: Modification Indices (MI) and Expected Parameter Change (EPC) indicators from the Confirmatory Factor Analysis (CFA) modeling, logistic DIF detection, and sequential procedure introduced with the CFA alignment approach. Simulation studies show that the proposed method outperformed traditional methods in almost all scenarios, or it was at least as accurate as the best one. We also provide an empirical example utilizing European Social Survey data including items known to be miss-translated, which are correctly identified with presented DNN approach.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司