亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A general quantum circuit can be simulated classically in exponential time. If it has a planar layout, then a tensor-network contraction algorithm due to Markov and Shi has a runtime exponential in the square root of its size, or more generally exponential in the treewidth of the underlying graph. Separately, Gottesman and Knill showed that if all gates are restricted to be Clifford, then there is a polynomial time simulation. We combine these two ideas and show that treewidth and planarity can be exploited to improve Clifford circuit simulation. Our main result is a classical algorithm with runtime scaling asymptotically as $n^{\omega/2}<n^{1.19}$ which samples from the output distribution obtained by measuring all $n$ qubits of a planar graph state in given Pauli bases. Here $\omega$ is the matrix multiplication exponent. We also provide a classical algorithm with the same asymptotic runtime which samples from the output distribution of any constant-depth Clifford circuit in a planar geometry. Our work improves known classical algorithms with cubic runtime. A key ingredient is a mapping which, given a tree decomposition of some graph $G$, produces a Clifford circuit with a structure that mirrors the tree decomposition and which emulates measurement of the corresponding graph state. We provide a classical simulation of this circuit with the runtime stated above for planar graphs and otherwise $nt^{\omega-1}$ where $t$ is the width of the tree decomposition. Our algorithm incorporates two subroutines which may be of independent interest. The first is a matrix-multiplication-time version of the Gottesman-Knill simulation of multi-qubit measurement on stabilizer states. The second is a new classical algorithm for solving symmetric linear systems over $\mathbb{F}_2$ in a planar geometry, extending previous works which only applied to non-singular linear systems in the analogous setting.

相關內容

Data is a crucial infrastructure to how artificial intelligence (AI) systems learn. However, these systems to date have been largely model-centric, putting a premium on the model at the expense of the data quality. Data quality issues beset the performance of AI systems, particularly in downstream deployments and in real-world applications. Data-centric AI (DCAI) as an emerging concept brings data, its quality and its dynamism to the forefront in considerations of AI systems through an iterative and systematic approach. As one of the first overviews, this article brings together data-centric perspectives and concepts to outline the foundations of DCAI. It specifically formulates six guiding principles for researchers and practitioners and gives direction for future advancement of DCAI.

We propose a new approach to the autoregressive spatial functional model, based on the notion of signature, which represents a function as an infinite series of its iterated integrals. It presents the advantage of being applicable to a wide range of processes. After having provided theoretical guarantees to the proposed model, we have shown in a simulation study and on a real data set that this new approach presents competitive performances compared to the traditional model.

We consider linear bounded operators acting in Banach spaces with a basis, such operators can be represented by an infinite matrix. We prove that for an invertible operator there exists a sequence of invertible finite-dimensional operators so that the family of norms of their inverses is uniformly bounded. It leads to the fact that solutions of finite-dimensional equations converge to the solution of initial operator equation with infinite-dimensional matrix.

Dual-path is a popular architecture for speech separation models (e.g. Sepformer) which splits long sequences into overlapping chunks for its intra- and inter-blocks that separately model intra-chunk local features and inter-chunk global relationships. However, it has been found that inter-blocks, which comprise half a dual-path model's parameters, contribute minimally to performance. Thus, we propose the Single-Path Global Modulation (SPGM) block to replace inter-blocks. SPGM is named after its structure consisting of a parameter-free global pooling module followed by a modulation module comprising only 2% of the model's total parameters. The SPGM block allows all transformer layers in the model to be dedicated to local feature modelling, making the overall model single-path. SPGM achieves 22.1 dB SI-SDRi on WSJ0-2Mix and 20.4 dB SI-SDRi on Libri2Mix, exceeding the performance of Sepformer by 0.5 dB and 0.3 dB respectively and matches the performance of recent SOTA models with up to 8 times fewer parameters. Model and weights are available at huggingface.co/yipjiaqi/spgm

A recent development in Bayesian optimization is the use of local optimization strategies, which can deliver strong empirical performance on high-dimensional problems compared to traditional global strategies. The "folk wisdom" in the literature is that the focus on local optimization sidesteps the curse of dimensionality; however, little is known concretely about the expected behavior or convergence of Bayesian local optimization routines. We first study the behavior of the local approach, and find that the statistics of individual local solutions of Gaussian process sample paths are surprisingly good compared to what we would expect to recover from global methods. We then present the first rigorous analysis of such a Bayesian local optimization algorithm recently proposed by M\"uller et al. (2021), and derive convergence rates in both the noisy and noiseless settings.

To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.

When deploying neural networks in real-life situations, the size and computational effort are often the limiting factors. This is especially true in environments where big, expensive hardware is not affordable, like in embedded medical devices, where budgets are often tight. State-of-the-art proposed multiple different lightweight solutions for such use cases, mostly by changing the base model architecture, not taking the input and output resolution into consideration. In this paper, we propose our architecture that takes advantage of the fact that in hardware-limited environments, we often refrain from using the highest available input resolutions to guarantee a higher throughput. Although using lower-resolution input leads to a significant reduction in computing and memory requirements, it may also incur reduced prediction quality. Our architecture addresses this problem by exploiting the fact that we can still utilize high-resolution ground-truths in training. The proposed model inputs lower-resolution images and high-resolution ground truths, which can improve the prediction quality by 5.5% while adding less than 200 parameters to the model. %reducing the frames per second only from 25 to 20. We conduct an extensive analysis to illustrate that our architecture enhances existing state-of-the-art frameworks for lightweight semantic segmentation of cancer in MRI images. We also tested the deployment speed of state-of-the-art lightweight networks and our architecture on Nvidia's Jetson Nano to emulate deployment in resource-constrained embedded scenarios.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司