We consider the Bayesian optimal filtering problem: i.e. estimating some conditional statistics of a latent time-series signal from an observation sequence. Classical approaches often rely on the use of assumed or estimated transition and observation models. Instead, we formulate a generic recurrent neural network framework and seek to learn directly a recursive mapping from observational inputs to the desired estimator statistics. The main focus of this article is the approximation capabilities of this framework. We provide approximation error bounds for filtering in general non-compact domains. We also consider strong time-uniform approximation error bounds that guarantee good long-time performance. We discuss and illustrate a number of practical concerns and implications of these results.
Tensor networks (TNs) and neural networks (NNs) are two fundamental data modeling approaches. TNs were introduced to solve the curse of dimensionality in large-scale tensors by converting an exponential number of dimensions to polynomial complexity. As a result, they have attracted significant attention in the fields of quantum physics and machine learning. Meanwhile, NNs have displayed exceptional performance in various applications, e.g., computer vision, natural language processing, and robotics research. Interestingly, although these two types of networks originate from different observations, they are inherently linked through the common multilinearity structure underlying both TNs and NNs, thereby motivating a significant number of intellectual developments regarding combinations of TNs and NNs. In this paper, we refer to these combinations as tensorial neural networks (TNNs), and present an introduction to TNNs in three primary aspects: network compression, information fusion, and quantum circuit simulation. Furthermore, this survey also explores methods for improving TNNs, examines flexible toolboxes for implementing TNNs, and documents TNN development while highlighting potential future directions. To the best of our knowledge, this is the first comprehensive survey that bridges the connections among NNs, TNs, and quantum circuits. We provide a curated list of TNNs at \url{//github.com/tnbar/awesome-tensorial-neural-networks}.
One of the reasons why many neural networks are capable of replicating complicated tasks or functions is their universal property. Though the past few decades have seen tremendous advances in theories of neural networks, a single constructive framework for neural network universality remains unavailable. This paper is the first effort to provide a unified and constructive framework for the universality of a large class of activation functions including most of existing ones. At the heart of the framework is the concept of neural network approximate identity (nAI). The main result is: {\em any nAI activation function is universal}. It turns out that most of existing activation functions are nAI, and thus universal in the space of continuous functions on compacta. The framework induces {\bf several advantages} over the contemporary counterparts. First, it is constructive with elementary means from functional analysis, probability theory, and numerical analysis. Second, it is the first unified attempt that is valid for most of existing activation functions. Third, as a by product, the framework provides the first universality proof for some of the existing activation functions including Mish, SiLU, ELU, GELU, and etc. Fourth, it provides new proofs for most activation functions. Fifth, it discovers new activation functions with guaranteed universality property. Sixth, for a given activation and error tolerance, the framework provides precisely the architecture of the corresponding one-hidden neural network with predetermined number of neurons, and the values of weights/biases. Seventh, the framework allows us to abstractly present the first universal approximation with favorable non-asymptotic rate.
Random smoothing data augmentation is a unique form of regularization that can prevent overfitting by introducing noise to the input data, encouraging the model to learn more generalized features. Despite its success in various applications, there has been a lack of systematic study on the regularization ability of random smoothing. In this paper, we aim to bridge this gap by presenting a framework for random smoothing regularization that can adaptively and effectively learn a wide range of ground truth functions belonging to the classical Sobolev spaces. Specifically, we investigate two underlying function spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in $D$-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the mixed smooth Sobolev space with a tensor structure. By using random smoothing regularization as novel convolution-based smoothing kernels, we can attain optimal convergence rates in these cases using a kernel gradient descent algorithm, either with early stopping or weight decay. It is noteworthy that our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality. This is achieved through various choices of injected noise distributions such as Gaussian, Laplace, or general polynomial noises, allowing for broad adaptation to the aforementioned structural assumptions of the underlying data. The convergence rate depends only on the effective dimension, which may be significantly smaller than the actual data dimension. We conduct numerical experiments on simulated data to validate our theoretical results.
Artificial neural networks (ANNs) are powerful machine learning methods used in many modern applications such as facial recognition, machine translation, and cancer diagnostics. A common issue with ANNs is that they usually have millions or billions of trainable parameters, and therefore tend to overfit to the training data. This is especially problematic in applications where it is important to have reliable uncertainty estimates. Bayesian neural networks (BNN) can improve on this, since they incorporate parameter uncertainty. In addition, latent binary Bayesian neural networks (LBBNN) also take into account structural uncertainty by allowing the weights to be turned on or off, enabling inference in the joint space of weights and structures. In this paper, we will consider two extensions to the LBBNN method: Firstly, by using the local reparametrization trick (LRT) to sample the hidden units directly, we get a more computationally efficient algorithm. More importantly, by using normalizing flows on the variational posterior distribution of the LBBNN parameters, the network learns a more flexible variational posterior distribution than the mean field Gaussian. Experimental results show that this improves predictive power compared to the LBBNN method, while also obtaining more sparse networks. We perform two simulation studies. In the first study, we consider variable selection in a logistic regression setting, where the more flexible variational distribution leads to improved results. In the second study, we compare predictive uncertainty based on data generated from two-dimensional Gaussian distributions. Here, we argue that our Bayesian methods lead to more realistic estimates of predictive uncertainty.
Recent research has shown that Deep Neural Networks (DNNs) are highly vulnerable to adversarial samples, which are highly transferable and can be used to attack other unknown black-box models. To improve the transferability of adversarial samples, several feature-based adversarial attack methods have been proposed to disrupt neuron activation in the middle layers. However, current state-of-the-art feature-based attack methods typically require additional computation costs for estimating the importance of neurons. To address this challenge, we propose a Singular Value Decomposition (SVD)-based feature-level attack method. Our approach is inspired by the discovery that eigenvectors associated with the larger singular values decomposed from the middle layer features exhibit superior generalization and attention properties. Specifically, we conduct the attack by retaining the decomposed Top-1 singular value-associated feature for computing the output logits, which are then combined with the original logits to optimize adversarial examples. Our extensive experimental results verify the effectiveness of our proposed method, which can be easily integrated into various baselines to significantly enhance the transferability of adversarial samples for disturbing normally trained CNNs and advanced defense strategies. The source code of this study is available at \textcolor{blue}{\href{//anonymous.4open.science/r/SVD-SSA-13BF/README.md}{Link}}.
In this paper we discuss potentially practical ways to produce expander graphs with good spectral properties and a compact description. We focus on several classes of uniform and bipartite expander graphs defined as random Schreier graphs of the general linear group over the finite field of size two. We perform numerical experiments and show that such constructions produce spectral expanders that can be useful for practical applications. To find a theoretical explanation of the observed experimental results, we used the method of moments to prove upper bounds for the expected second largest eigenvalue of the random Schreier graphs used in our constructions. We focus on bounds for which it is difficult to study the asymptotic behaviour but it is possible to compute non-trivial conclusions for relatively small graphs with parameters from our numerical experiments (e.g., with less than 2^200 vertices and degree at least logarithmic in the number of vertices).
In this paper, we consider the generalization ability of deep wide feedforward ReLU neural networks defined on a bounded domain $\mathcal X \subset \mathbb R^{d}$. We first demonstrate that the generalization ability of the neural network can be fully characterized by that of the corresponding deep neural tangent kernel (NTK) regression. We then investigate on the spectral properties of the deep NTK and show that the deep NTK is positive definite on $\mathcal{X}$ and its eigenvalue decay rate is $(d+1)/d$. Thanks to the well established theories in kernel regression, we then conclude that multilayer wide neural networks trained by gradient descent with proper early stopping achieve the minimax rate, provided that the regression function lies in the reproducing kernel Hilbert space (RKHS) associated with the corresponding NTK. Finally, we illustrate that the overfitted multilayer wide neural networks can not generalize well on $\mathbb S^{d}$.
Accurately estimating the probability of failure for safety-critical systems is important for certification. Estimation is often challenging due to high-dimensional input spaces, dangerous test scenarios, and computationally expensive simulators; thus, efficient estimation techniques are important to study. This work reframes the problem of black-box safety validation as a Bayesian optimization problem and introduces an algorithm, Bayesian safety validation, that iteratively fits a probabilistic surrogate model to efficiently predict failures. The algorithm is designed to search for failures, compute the most-likely failure, and estimate the failure probability over an operating domain using importance sampling. We introduce a set of three acquisition functions that focus on reducing uncertainty by covering the design space, optimizing the analytically derived failure boundaries, and sampling the predicted failure regions. Mainly concerned with systems that only output a binary indication of failure, we show that our method also works well in cases where more output information is available. Results show that Bayesian safety validation achieves a better estimate of the probability of failure using orders of magnitude fewer samples and performs well across various safety validation metrics. We demonstrate the algorithm on three test problems with access to ground truth and on a real-world safety-critical subsystem common in autonomous flight: a neural network-based runway detection system. This work is open sourced and currently being used to supplement the FAA certification process of the machine learning components for an autonomous cargo aircraft.
In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.
We propose a Bayesian convolutional neural network built upon Bayes by Backprop and elaborate how this known method can serve as the fundamental construct of our novel, reliable variational inference method for convolutional neural networks. First, we show how Bayes by Backprop can be applied to convolutional layers where weights in filters have probability distributions instead of point-estimates; and second, how our proposed framework leads with various network architectures to performances comparable to convolutional neural networks with point-estimates weights. In the past, Bayes by Backprop has been successfully utilised in feedforward and recurrent neural networks, but not in convolutional ones. This work symbolises the extension of the group of Bayesian neural networks which encompasses all three aforementioned types of network architectures now.