An important requirement in the standard finite element method (FEM) is that all elements in the underlying mesh must be tangle-free i.e., the Jacobian must be positive throughout each element. To relax this requirement, an isoparametric tangled finite element method (i-TFEM) was recently proposed for linear elasticity problems. It was demonstrated that i-TFEM leads to optimal convergence even for severely tangled meshes. In this paper, i-TFEM is generalized to nonlinear elasticity. Specifically, a variational formulation is proposed that leads to local modification in the tangent stiffness matrix associated with tangled elements, and an additional piece-wise compatibility constraint. i-TFEM reduces to standard FEM for tangle-free meshes. The effectiveness and convergence characteristics of i-TFEM are demonstrated through a series of numerical experiments, involving both compressible and in-compressible problems.
We study parametric inference on a rich class of hazard regression models in the presence of right-censoring. Previous literature has reported some inferential challenges, such as multimodal or flat likelihood surfaces, in this class of models for some particular data sets. We formalize the study of these inferential problems by linking them to the concepts of near-redundancy and practical non-identifiability of parameters. We show that the maximum likelihood estimators of the parameters in this class of models are consistent and asymptotically normal. Thus, the inferential problems in this class of models are related to the finite-sample scenario, where it is difficult to distinguish between the fitted model and a nested non-identifiable (i.e., parameter-redundant) model. We propose a method for detecting near-redundancy, based on distances between probability distributions. We also employ methods used in other areas for detecting practical non-identifiability and near-redundancy, including the inspection of the profile likelihood function and the Hessian method. For cases where inferential problems are detected, we discuss alternatives such as using model selection tools to identify simpler models that do not exhibit these inferential problems, increasing the sample size, or extending the follow-up time. We illustrate the performance of the proposed methods through a simulation study. Our simulation study reveals a link between the presence of near-redundancy and practical non-identifiability. Two illustrative applications using real data, with and without inferential problems, are presented.
We introduce a priori Sobolev-space error estimates for the solution of nonlinear, and possibly parametric, PDEs using Gaussian process and kernel based methods. The primary assumptions are: (1) a continuous embedding of the reproducing kernel Hilbert space of the kernel into a Sobolev space of sufficient regularity; and (2) the stability of the differential operator and the solution map of the PDE between corresponding Sobolev spaces. The proof is articulated around Sobolev norm error estimates for kernel interpolants and relies on the minimizing norm property of the solution. The error estimates demonstrate dimension-benign convergence rates if the solution space of the PDE is smooth enough. We illustrate these points with applications to high-dimensional nonlinear elliptic PDEs and parametric PDEs. Although some recent machine learning methods have been presented as breaking the curse of dimensionality in solving high-dimensional PDEs, our analysis suggests a more nuanced picture: there is a trade-off between the regularity of the solution and the presence of the curse of dimensionality. Therefore, our results are in line with the understanding that the curse is absent when the solution is regular enough.
We consider a general nonsymmetric second-order linear elliptic PDE in the framework of the Lax-Milgram lemma. We formulate and analyze an adaptive finite element algorithm with arbitrary polynomial degree that steers the adaptive mesh-refinement and the inexact iterative solution of the arising linear systems. More precisely, the iterative solver employs, as an outer loop, the so-called Zarantonello iteration to symmetrize the system and, as an inner loop, a uniformly contractive algebraic solver, e.g., an optimally preconditioned conjugate gradient method or an optimal geometric multigrid algorithm. We prove that the proposed inexact adaptive iteratively symmetrized finite element method (AISFEM) leads to full linear convergence and, for sufficiently small adaptivity parameters, to optimal convergence rates with respect to the overall computational cost, i.e., the total computational time. Numerical experiments underline the theory.
According to Aistleitner and Weimar, there exist two-dimensional (double) infinite matrices whose star-discrepancy $D_N^{*s}$ of the first $N$ rows and $s$ columns, interpreted as $N$ points in $[0,1]^s$, satisfies an inequality of the form $$D_N^{*s} \leq \sqrt{\alpha} \sqrt{A+B\frac{\ln(\log_2(N))}{s}}\sqrt{\frac{s}{N}}$$ with $\alpha = \zeta^{-1}(2) \approx 1.73, A=1165$ and $B=178$. These matrices are obtained by using i.i.d sequences, and the parameters $s$ and $N$ refer to the dimension and the sample size respectively. In this paper, we improve their result in two directions: First, we change the character of the equation so that the constant $A$ gets replaced by a value $A_s$ dependent on the dimension $s$ such that for $s>1$ we have $A_s<A$. Second, we generalize the result to the case of the (extreme) discrepancy. The paper is complemented by a section where we show numerical results for the dependence of the parameter $A_s$ on $s$.
A least-squares neural network (LSNN) method was introduced for solving scalar linear and nonlinear hyperbolic conservation laws (HCLs) in [7, 6]. This method is based on an equivalent least-squares (LS) formulation and uses ReLU neural network as approximating functions, making it ideal for approximating discontinuous functions with unknown interface location. In the design of the LSNN method for HCLs, the numerical approximation of differential operators is a critical factor, and standard numerical or automatic differentiation along coordinate directions can often lead to a failed NN-based method. To overcome this challenge, this paper rewrites HCLs in their divergence form of space and time and introduces a new discrete divergence operator. As a result, the proposed LSNN method is free of penalization of artificial viscosity. Theoretically, the accuracy of the discrete divergence operator is estimated even for discontinuous solutions. Numerically, the LSNN method with the new discrete divergence operator was tested for several benchmark problems with both convex and non-convex fluxes, and was able to compute the correct physical solution for problems with rarefaction, shock or compound waves. The method is capable of capturing the shock of the underlying problem without oscillation or smearing, even without any penalization of the entropy condition, total variation, and/or artificial viscosity.
This paper explores the capacity of additive Vertically-Drifted First Arrival Position (VDFAP) noise channels, which are emerging as a new paradigm for diffusive molecular communication. Analogous to the capacity of parallel Gaussian channels, the capacity of VDFAP noise channels is defined as the supremum of the mutual information between the input and output signals subject to an overall second-moment constraint on input distributions. Upper and lower bounds for this capacity are derived for the case of three spatial dimensions, based on an analysis of the characteristic function of the VDFAP distribution and an investigation of its stability properties. The results of this study contribute to the ongoing effort to understand the fundamental limits of molecular communication systems.
Thanks to their universal approximation properties and new efficient training strategies, Deep Neural Networks are becoming a valuable tool for the approximation of mathematical operators. In the present work, we introduce Mesh-Informed Neural Networks (MINNs), a class of architectures specifically tailored to handle mesh based functional data, and thus of particular interest for reduced order modeling of parametrized Partial Differential Equations (PDEs). The driving idea behind MINNs is to embed hidden layers into discrete functional spaces of increasing complexity, obtained through a sequence of meshes defined over the underlying spatial domain. The approach leads to a natural pruning strategy which enables the design of sparse architectures that are able to learn general nonlinear operators. We assess this strategy through an extensive set of numerical experiments, ranging from nonlocal operators to nonlinear diffusion PDEs, where MINNs are compared against more traditional architectures, such as classical fully connected Deep Neural Networks, but also more recent ones, such as DeepONets and Fourier Neural Operators. Our results show that MINNs can handle functional data defined on general domains of any shape, while ensuring reduced training times, lower computational costs, and better generalization capabilities, thus making MINNs very well-suited for demanding applications such as Reduced Order Modeling and Uncertainty Quantification for PDEs.
In this paper we consider the generalized inverse iteration for computing ground states of the Gross-Pitaevskii eigenvector problem (GPE). For that we prove explicit linear convergence rates that depend on the maximum eigenvalue in magnitude of a weighted linear eigenvalue problem. Furthermore, we show that this eigenvalue can be bounded by the first spectral gap of a linearized Gross-Pitaevskii operator, recovering the same rates as for linear eigenvector problems. With this we establish the first local convergence result for the basic inverse iteration for the GPE without damping. We also show how our findings directly generalize to extended inverse iterations, such as the Gradient Flow Discrete Normalized (GFDN) proposed in [W. Bao, Q. Du, SIAM J. Sci. Comput., 25 (2004)] or the damped inverse iteration suggested in [P. Henning, D. Peterseim, SIAM J. Numer. Anal., 53 (2020)]. Our analysis also reveals why the inverse iteration for the GPE does not react favourably to spectral shifts. This empirical observation can now be explained with a blow-up of a weighting function that crucially contributes to the convergence rates. Our findings are illustrated by numerical experiments.
A modification of Newton's method for solving systems of $n$ nonlinear equations is presented. The new matrix-free method relies on a given decomposition of the invertible Jacobian of the residual into invertible sparse local Jacobians according to the chain rule of differentiation. It is motivated in the context of local Jacobians with bandwidth $2m+1$ for $m\ll n$. A reduction of the computational cost by $\mathcal{O}(\frac{n}{m})$ can be observed. Supporting run time measurements are presented for the tridiagonal case showing a reduction of the computational cost by $\mathcal{O}(n).$ Generalization yields the combinatorial Matrix-Free Newton Step problem. We prove NP-completeness and we present algorithmic components for building methods for the approximate solution. Inspired by adjoint Algorithmic Differentiation, the new method shares several challenges for the latter including the DAG Reversal problem. Further challenges are due to combinatorial problems in sparse linear algebra such as Bandwidth or Directed Elimination Ordering.
Modern shock-capturing schemes often suffer from numerical shock anomalies if the flow field contains strong shocks, which may limit their further application in hypersonic flow computations. In the current study, we devote our efforts to exploring the primary numerical characteristics and the underlying mechanism of shock instability for second-order finite-volume schemes. To this end, we, for the first time, develop the matrix stability analysis method for the finite-volume MUSCL approach. Such a linearized analysis method allows to investigate the shock instability problem of the finite-volume shock-capturing schemes in a quantitative and efficient manner. Results of the stability analysis demonstrate that the shock stability of second-order scheme is strongly related to the Riemann solver, Mach number, limiter function, numerical shock structure, and computational grid. Unique stability characteristics associated with these factors for second-order methods are revealed quantitatively with the established method. Source location of instability is also clarified by the matrix stability analysis method. Results show that the shock instability originates from the numerical shock structure. Such conclusions pave the way to better understand the shock instability problem and may shed new light on developing more reliable shock-capturing methods for compressible flows with high Mach number.