亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article introduces new multiplicative updates for nonnegative matrix factorization with the $\beta$-divergence and sparse regularization of one of the two factors (say, the activation matrix). It is well known that the norm of the other factor (the dictionary matrix) needs to be controlled in order to avoid an ill-posed formulation. Standard practice consists in constraining the columns of the dictionary to have unit norm, which leads to a nontrivial optimization problem. Our approach leverages a reparametrization of the original problem into the optimization of an equivalent scale-invariant objective function. From there, we derive block-descent majorization-minimization algorithms that result in simple multiplicative updates for either $\ell_{1}$-regularization or the more "aggressive" log-regularization. In contrast with other state-of-the-art methods, our algorithms are universal in the sense that they can be applied to any $\beta$-divergence (i.e., any value of $\beta$) and that they come with convergence guarantees. We report numerical comparisons with existing heuristic and Lagrangian methods using various datasets: face images, an audio spectrogram, hyperspectral data, and song play counts. We show that our methods obtain solutions of similar quality at convergence (similar objective values) but with significantly reduced CPU times.

相關內容

One of the major open problems in complexity theory is to demonstrate an explicit function which requires super logarithmic depth, a.k.a, the $\mathbf{P}$ versus $\mathbf{NC^1}$ problem. The current best depth lower bound is $(3-o(1))\cdot \log n$, and it is widely open how to prove a super-$3\log n$ depth lower bound. Recently Mihajlin and Sofronova (CCC'22) show if considering formulas with restriction on top, we can break the $3\log n$ barrier. Formally, they prove there exist two functions $f:\{0,1\}^n \rightarrow \{0,1\},g:\{0,1\}^n \rightarrow \{0,1\}^n$, such that for any constant $0<\alpha<0.4$ and constant $0<\epsilon<\alpha/2$, their XOR composition $f(g(x)\oplus y)$ is not computable by an AND of $2^{(\alpha-\epsilon)n}$ formulas of size at most $2^{(1-\alpha/2-\epsilon)n}$. This implies a modified version of Andreev function is not computable by any circuit of depth $(3.2-\epsilon)\log n$ with the restriction that top $0.4-\epsilon$ layers only consist of AND gates for any small constant $\epsilon>0$. They ask whether the parameter $\alpha$ can be push up to nearly $1$ thus implying a nearly-$3.5\log n$ depth lower bound. In this paper, we provide a stronger answer to their question. We show there exist two functions $f:\{0,1\}^n \rightarrow \{0,1\},g:\{0,1\}^n \rightarrow \{0,1\}^n$, such that for any constant $0<\alpha<2-o(1)$, their XOR composition $f(g(x)\oplus y)$ is not computable by an AND of $2^{\alpha n}$ formulas of size at most $2^{(1-\alpha/2-o(1))n}$. This implies a $(4-o(1))\log n$ depth lower bound with the restriction that top $2-o(1)$ layers only consist of AND gates. We prove it by observing that one crucial component in Mihajlin and Sofronova's work, called the well-mixed set of functions, can be significantly simplified thus improved. Then with this observation and a more careful analysis, we obtain these nearly tight results.

The Cayley distance between two permutations $\pi, \sigma \in S_n$ is the minimum number of \textit{transpositions} required to obtain the permutation $\sigma$ from $\pi$. When we only allow adjacent transpositions, the minimum number of such transpositions to obtain $\sigma$ from $\pi$ is referred to the Kendall $\tau$-distance. A set $C$ of permutation words of length $n$ is called a $t$-Cayley permutation code if every pair of distinct permutations in $C$ has Cayley distance greater than $t$. A $t$-Kendall permutation code is defined similarly. Let $C(n,t)$ and $K(n,t)$ be the maximum size of a $t$-Cayley and a $t$-Kendall permutation code of length $n$, respectively. In this paper, we improve the Gilbert-Varshamov bound asymptotically by a factor $\log(n)$, namely \[ C(n,t) \geq \Omega_t\left(\frac{n!\log n}{n^{2t}}\right) \text{ and } K(n,t) \geq \Omega_t\left(\frac{n! \log n}{n^t}\right).\] Our proof is based on graph theory techniques.

We study the asymptotic eigenvalue distribution of the Slepian spatiospectral concentration problem within subdomains of the $d$-dimensional unit ball $\mathbb{B}^d$. The clustering of the eigenvalues near zero and one is a well-known phenomenon. Here, we provide an analytical investigation of this phenomenon for two different notions of bandlimit: (a) multivariate polynomials, with the maximal polynomial degree determining the bandlimit, (b) basis functions that separate into radial and spherical contributions (expressed in terms of Jacobi polynomials and spherical harmonics, respectively), with separate maximal degrees for the radial and spherical contributions determining the bandlimit. In particular, we investigate the number of relevant non-zero eigenvalues (the so-called Shannon number) and obtain distinct asymptotic results for both notions of bandlimit, characterized by Jacobi weights $W_0$ and a modification $\widetilde{W_0}$, respectively. The analytic results are illustrated by numerical examples on the 3-d ball.

We derive eigenvalue bounds for the $t$-distance chromatic number of a graph, which is a generalization of the classical chromatic number. We apply such bounds to hypercube graphs, providing alternative spectral proofs for results by Ngo, Du and Graham [Inf. Process. Lett., 2002], and improving their bound for several instances. We also apply the eigenvalue bounds to Lee graphs, extending results by Kim and Kim [Discrete Appl. Math., 2011]. Finally, we provide a complete characterization for the existence of perfect Lee codes of minimum distance $3$. In order to prove our results, we use a mix of spectral and number theory tools. Our results, which provide the first application of spectral methods to Lee codes, illustrate that such methods succeed to capture the nature of the Lee metric.

An $\mathsf{F}_{d}$ upper bound for the reachability problem in vector addition systems with states (VASS) in fixed dimension is given, where $\mathsf{F}_d$ is the $d$-th level of the Grzegorczyk hierarchy of complexity classes. The new algorithm combines the idea of the linear path scheme characterization of the reachability in the $2$-dimension VASSes with the general decomposition algorithm by Mayr, Kosaraju and Lambert. The result improves the $\mathsf{F}_{d + 4}$ upper bound due to Leroux and Schmitz (LICS 2019).

Many analyses of multivariate data focus on evaluating the dependence between two sets of variables, rather than the dependence among individual variables within each set. Canonical correlation analysis (CCA) is a classical data analysis technique that estimates parameters describing the dependence between such sets. However, inference procedures based on traditional CCA rely on the assumption that all variables are jointly normally distributed. We present a semiparametric approach to CCA in which the multivariate margins of each variable set may be arbitrary, but the dependence between variable sets is described by a parametric model that provides low-dimensional summaries of dependence. While maximum likelihood estimation in the proposed model is intractable, we propose two estimation strategies: one using a pseudolikelihood for the model and one using a Markov chain Monte Carlo (MCMC) algorithm that provides Bayesian estimates and confidence regions for the between-set dependence parameters. The MCMC algorithm is derived from a multirank likelihood function, which uses only part of the information in the observed data in exchange for being free of assumptions about the multivariate margins. We apply the proposed Bayesian inference procedure to Brazilian climate data and monthly stock returns from the materials and communications market sectors.

At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an $n^{O(d)}$-delay algorithm listing all minimal transversals of an $n$-vertex hypergraph of degeneracy $d$. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by $d$ could be made FPT-delay for a weaker notion of degeneracy, or even parameterized by the maximum degree $\Delta$, i.e., whether it can be turned into an algorithm with delay $f(\Delta)\cdot n^{O(1)}$ for some computable function $f$. Moreover, and as a first step toward answering that question, they note that they could not achieve these time bounds even for the particular case of minimal dominating sets enumeration. In this paper, using ordered generation, we show that an FPT-delay algorithm can be devised for minimal transversals enumeration parameterized by the degeneracy and dimension, giving a positive and more general answer to the latter question.

In a Jacobi--Davidson (JD) type method for singular value decomposition (SVD) problems, called JDSVD, a large symmetric and generally indefinite correction equation is approximately solved iteratively at each outer iteration, which constitutes the inner iterations and dominates the overall efficiency of JDSVD. In this paper, a convergence analysis is made on the minimal residual (MINRES) method for the correction equation. Motivated by the results obtained, a preconditioned correction equation is derived that extracts useful information from current searching subspaces to construct effective preconditioners for the correction equation and is proved to retain the same convergence of outer iterations of JDSVD. The resulting method is called inner preconditioned JDSVD (IPJDSVD) method. Convergence results show that MINRES for the preconditioned correction equation can converge much faster when there is a cluster of singular values closest to a given target, so that IPJDSVD is more efficient than JDSVD. A new thick-restart IPJDSVD algorithm with deflation and purgation is proposed that simultaneously accelerates the outer and inner convergence of the standard thick-restart JDSVD and computes several singular triplets of a large matrix. Numerical experiments justify the theory and illustrate the considerable superiority of IPJDSVD to JDSVD.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

We describe a new dependent-rounding algorithmic framework for bipartite graphs. Given a fractional assignment $\vec x$ of values to edges of graph $G = (U \cup V, E)$, the algorithms return an integral solution $\vec X$ such that each right-node $v \in V$ has at most one neighboring edge $f$ with $X_f = 1$, and where the variables $X_e$ also satisfy broad nonpositive-correlation properties. In particular, for any edges $e_1, e_2$ sharing a left-node $u \in U$, the variables $X_{e_1}, X_{e_2}$ have strong negative-correlation properties, i.e. the expectation of $X_{e_1} X_{e_2}$ is significantly below $x_{e_1} x_{e_2}$. This algorithm is based on generating negatively-correlated Exponential random variables and using them in a contention-resolution scheme inspired by an algorithm Im & Shadloo (2020). Our algorithm gives stronger and much more flexible negative correlation properties. Dependent rounding schemes with negative correlation properties have been used for approximation algorithms for job-scheduling on unrelated machines to minimize weighted completion times (Bansal, Srinivasan, & Svensson (2021), Im & Shadloo (2020), Im & Li (2023)). Using our new dependent-rounding algorithm, among other improvements, we obtain a $1.398$-approximation for this problem. This significantly improves over the prior $1.45$-approximation ratio of Im & Li (2023).

北京阿比特科技有限公司