亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Manifold visualisation techniques are commonly used to visualise high-dimensional datasets in physical sciences. In this paper we apply a recently introduced manifold visualisation method, called Slise, on datasets from physics and chemistry. Slisemap combines manifold visualisation with explainable artificial intelligence. Explainable artificial intelligence is used to investigate the decision processes of black box machine learning models and complex simulators. With Slisemap we find an embedding such that data items with similar local explanations are grouped together. Hence, Slisemap gives us an overview of the different behaviours of a black box model. This makes Slisemap into a supervised manifold visualisation method, where the patterns in the embedding reflect a target property. In this paper we show how Slisemap can be used and evaluated on physical data and that Slisemap is helpful in finding meaningful information on classification and regression models trained on these datasets.

相關內容

Modern Code Review (MCR) is an informal tool-assisted quality assurance practice. It relies on the asynchronous communication among the authors of code changes and reviewers, who are developers that provide feedback. However, from candidate developers, some are able to provide better feedback than others given a particular context. The selection of reviewers is thus an important task, which can benefit from automated support. Many approaches have been proposed in this direction, using for example data from code review repositories to recommend reviewers. In this paper, we propose the use of team-related features to improve the performance of predictions that are helpful to build code reviewer recommenders, with our target predictions being the identification of reviewers that would participate in a review and the provided amount of feedback. We evaluate the prediction power of these features, which are related to code ownership, workload, and team relationship. This evaluation was done by carefully addressing challenges imposed by the MCR domain, such as temporal aspects of the dataset and unbalanced classes. Moreover, given that it is currently unknown how much past data is needed for building MCR prediction models with acceptable performance, we explore the amount of past data used to build prediction models. Our results show that, individually, features related to code ownership have the best prediction power. However, based on feature selection, we conclude that all proposed features together with lines of code can make the best predictions for both reviewer participation and amount of feedback. Regarding the amount of past data, the timeframes of 3, 6, 9, and 12 months of data produce similar results. Therefore, models can be trained considering short timeframes, thus reducing the computational costs with negligible impact in the prediction performance ...

This study elaborates a text-based metric to quantify the unique position of stylized scientific research, characterized by its innovative integration of diverse knowledge components and potential to pivot established scientific paradigms. Our analysis reveals a concerning decline in stylized research, highlighted by its comparative undervaluation in terms of citation counts and protracted peer-review duration. Despite facing these challenges, the disruptive potential of stylized research remains robust, consistently introducing groundbreaking questions and theories. This paper posits that substantive reforms are necessary to incentivize and recognize the value of stylized research, including optimizations to the peer-review process and the criteria for evaluating scientific impact. Embracing these changes may be imperative to halt the downturn in stylized research and ensure enduring scholarly exploration in endless frontiers.

Flexoelectricity shows promising applications for self-powered devices with its increased power density. This paper presents a second-order computational homogenization strategy for flexoelectric composite. The macro-micro scale transition, Hill-Mandel energy condition, periodic boundary conditions, and macroscopic constitutive tangents for the two-scale electromechanical coupling are investigated and considered in the homogenization formulation. The macrostructure and microstructure are discretized using $C^1$ triangular finite elements. The second-order multiscale solution scheme is implemented using ABAQUS with user subroutines. Finally, we present numerical examples including parametric analysis of a square plate with holes and the design of piezoelectric materials made of non-piezoelectric materials to demonstrate the numerical implementation and the size-dependent effects of flexoelectricity.

This paper presents a critical analysis of generative Artificial Intelligence (AI) detection tools in higher education assessments. The rapid advancement and widespread adoption of generative AI, particularly in education, necessitates a reevaluation of traditional academic integrity mechanisms. We explore the effectiveness, vulnerabilities, and ethical implications of AI detection tools in the context of preserving academic integrity. Our study synthesises insights from various case studies, newspaper articles, and student testimonies to scrutinise the practical and philosophical challenges associated with AI detection. We argue that the reliance on detection mechanisms is misaligned with the educational landscape, where AI plays an increasingly widespread role. This paper advocates for a strategic shift towards robust assessment methods and educational policies that embrace generative AI usage while ensuring academic integrity and authenticity in assessments.

The integration of data and knowledge from several sources is known as data fusion. When data is only available in a distributed fashion or when different sensors are used to infer a quantity of interest, data fusion becomes essential. In Bayesian settings, a priori information of the unknown quantities is available and, possibly, present among the different distributed estimators. When the local estimates are fused, the prior knowledge used to construct several local posteriors might be overused unless the fusion node accounts for this and corrects it. In this paper, we analyze the effects of shared priors in Bayesian data fusion contexts. Depending on different common fusion rules, our analysis helps to understand the performance behavior as a function of the number of collaborative agents and as a consequence of different types of priors. The analysis is performed by using two divergences which are common in Bayesian inference, and the generality of the results allows to analyze very generic distributions. These theoretical results are corroborated through experiments in a variety of estimation and classification problems, including linear and nonlinear models, and federated learning schemes.

In this paper we explore the concept of sequential inductive prediction intervals using theory from sequential testing. We furthermore introduce a 3-parameter PAC definition of prediction intervals that allows us via simulation to achieve almost sharp bounds with high probability.

This paper considers the problem of robust iterative Bayesian smoothing in nonlinear state-space models with additive noise using Gaussian approximations. Iterative methods are known to improve smoothed estimates but are not guaranteed to converge, motivating the development of more robust versions of the algorithms. The aim of this article is to present Levenberg-Marquardt (LM) and line-search extensions of the classical iterated extended Kalman smoother (IEKS) as well as the iterated posterior linearisation smoother (IPLS). The IEKS has previously been shown to be equivalent to the Gauss-Newton (GN) method. We derive a similar GN interpretation for the IPLS. Furthermore, we show that an LM extension for both iterative methods can be achieved with a simple modification of the smoothing iterations, enabling algorithms with efficient implementations. Our numerical experiments show the importance of robust methods, in particular for the IEKS-based smoothers. The computationally expensive IPLS-based smoothers are naturally robust but can still benefit from further regularisation.

In recent years, the development of technologies for causal inference with privacy preservation of distributed data has gained considerable attention. Many existing methods for distributed data focus on resolving the lack of subjects (samples) and can only reduce random errors in estimating treatment effects. In this study, we propose a data collaboration quasi-experiment (DC-QE) that resolves the lack of both subjects and covariates, reducing random errors and biases in the estimation. Our method involves constructing dimensionality-reduced intermediate representations from private data from local parties, sharing intermediate representations instead of private data for privacy preservation, estimating propensity scores from the shared intermediate representations, and finally, estimating the treatment effects from propensity scores. Through numerical experiments on both artificial and real-world data, we confirm that our method leads to better estimation results than individual analyses. While dimensionality reduction loses some information in the private data and causes performance degradation, we observe that sharing intermediate representations with many parties to resolve the lack of subjects and covariates sufficiently improves performance to overcome the degradation caused by dimensionality reduction. Although external validity is not necessarily guaranteed, our results suggest that DC-QE is a promising method. With the widespread use of our method, intermediate representations can be published as open data to help researchers find causalities and accumulate a knowledge base.

We present a novel clustering algorithm, visClust, that is based on lower dimensional data representations and visual interpretation. Thereto, we design a transformation that allows the data to be represented by a binary integer array enabling the use of image processing methods to select a partition. Qualitative and quantitative analyses measured in accuracy and an adjusted Rand-Index show that the algorithm performs well while requiring low runtime and RAM. We compare the results to 6 state-of-the-art algorithms with available code, confirming the quality of visClust by superior performance in most experiments. Moreover, the algorithm asks for just one obligatory input parameter while allowing optimization via optional parameters. The code is made available on GitHub and straightforward to use.

In this paper, we study the method to reconstruct dynamical systems from data without time labels. Data without time labels appear in many applications, such as molecular dynamics, single-cell RNA sequencing etc. Reconstruction of dynamical system from time sequence data has been studied extensively. However, these methods do not apply if time labels are unknown. Without time labels, sequence data becomes distribution data. Based on this observation, we propose to treat the data as samples from a probability distribution and try to reconstruct the underlying dynamical system by minimizing the distribution loss, sliced Wasserstein distance more specifically. Extensive experiment results demonstrate the effectiveness of the proposed method.

北京阿比特科技有限公司