Despite the efficacy of network sparsity in alleviating the deployment strain of Large Language Models (LLMs), it endures significant performance degradation. Applying Low-Rank Adaptation (LoRA) to fine-tune the sparse LLMs offers an intuitive approach to counter this predicament, while it holds shortcomings include: 1) The inability to integrate LoRA weights into sparse LLMs post-training, and 2) Insufficient performance recovery at high sparsity ratios. In this paper, we introduce dynamic Low-rank Sparse Adaptation (LoSA), a novel method that seamlessly integrates low-rank adaptation into LLM sparsity within a unified framework, thereby enhancing the performance of sparse LLMs without increasing the inference latency. In particular, LoSA dynamically sparsifies the LoRA outcomes based on the corresponding sparse weights during fine-tuning, thus guaranteeing that the LoRA module can be integrated into the sparse LLMs post-training. Besides, LoSA leverages Representation Mutual Information (RMI) as an indicator to determine the importance of layers, thereby efficiently determining the layer-wise sparsity rates during fine-tuning. Predicated on this, LoSA adjusts the rank of the LoRA module based on the variability in layer-wise reconstruction errors, allocating an appropriate fine-tuning for each layer to reduce the output discrepancies between dense and sparse LLMs. Extensive experiments tell that LoSA can efficiently boost the efficacy of sparse LLMs within a few hours, without introducing any additional inferential burden. For example, LoSA reduced the perplexity of sparse LLaMA-2-7B by 68.73 and increased zero-shot accuracy by 16.32$\%$, achieving a 2.60$\times$ speedup on CPU and 2.23$\times$ speedup on GPU, requiring only 45 minutes of fine-tuning on a single NVIDIA A100 80GB GPU. Code is available at //github.com/wzhuang-xmu/LoSA.
This work investigates the potential of exploiting movable antennas (MAs) to enhance the performance of a multi-user downlink integrated sensing and communication (ISAC) system. Specifically, we formulate an optimization problem to maximize the transmit beampattern gain for sensing while simultaneously meeting each user's communication requirement by jointly optimizing antenna positions and beamforming design. The problem formulated is highly non-convex and involves multivariate-coupled constraints. To address these challenges, we introduce a series of auxiliary random variables and transform the original problem into an augmented Lagrangian problem. A double-loop algorithm based on a penalty dual decomposition framework is then developed to solve the problem. Numerical results validate the effectiveness of the proposed design, demonstrating its superiority over MA designs based on successive convex approximation optimization and other baseline approaches in ISAC systems. The results also highlight the advantages of MAs in achieving better sensing performance and improved beam control, especially for sparse arrays with large apertures.
Quad Bayer demosaicing is the central challenge for enabling the widespread application of Hybrid Event-based Vision Sensors (HybridEVS). Although existing learning-based methods that leverage long-range dependency modeling have achieved promising results, their complexity severely limits deployment on mobile devices for real-world applications. To address these limitations, we propose a lightweight Mamba-based binary neural network designed for efficient and high-performing demosaicing of HybridEVS RAW images. First, to effectively capture both global and local dependencies, we introduce a hybrid Binarized Mamba-Transformer architecture that combines the strengths of the Mamba and Swin Transformer architectures. Next, to significantly reduce computational complexity, we propose a binarized Mamba (Bi-Mamba), which binarizes all projections while retaining the core Selective Scan in full precision. Bi-Mamba also incorporates additional global visual information to enhance global context and mitigate precision loss. We conduct quantitative and qualitative experiments to demonstrate the effectiveness of BMTNet in both performance and computational efficiency, providing a lightweight demosaicing solution suited for real-world edge devices. Our codes and models are available at //github.com/Clausy9/BMTNet.
We consider a novel routing protocol suitable for ad-hoc networks with dynamically changing topologies, such as DECT 2020 NR (NR+) systems, which often lead to missing links between the nodes and thus, incomplete or inefficient routes. A key point of the proposed protocol is the combination of network discovery and matrix completion techniques, which allow the nodes to establish communication paths efficiently and reliably. Additionally, multihop localization is performed to estimate the location of the nodes without needing to broadcast each node's geographical position, thus preserving privacy during the routing process and enabling nodes in the network to independently find potentially missing paths in a decentralized manner instead of flooding the whole network. Simulation results illustrate the good performance of the proposed technique in terms of the average number of hops of the obtained routes in different scenarios, with different network densities and amounts of incompleteness.
As the Metaverse envisions deeply immersive and pervasive connectivity in 6G networks, Integrated Access and Backhaul (IAB) emerges as a critical enabler to meet the demanding requirements of massive and immersive communications. IAB networks offer a scalable solution for expanding broadband coverage in urban environments. However, optimizing IAB node deployment to ensure reliable coverage while minimizing costs remains challenging due to location constraints and the dynamic nature of cities. Existing heuristic methods, such as Greedy Algorithms, have been employed to address these optimization problems. This work presents a novel Deep Reinforcement Learning ( DRL) approach for IAB network planning, tailored to future 6G scenarios that seek to support ultra-high data rates and dense device connectivity required by immersive Metaverse applications. We utilize Deep Q-Network (DQN) with action elimination and integrate DQN, Double Deep Q-Network ( DDQN), and Dueling DQN architectures to effectively manage large state and action spaces. Simulations with various initial donor configurations demonstrate the effectiveness of our DRL approach, with Dueling DQN reducing node count by an average of 12.3% compared to traditional heuristics. The study underscores how advanced DRL techniques can address complex network planning challenges in 6G-enabled Metaverse contexts, providing an efficient and adaptive solution for IAB deployment in diverse urban environments.
Recently, significant efforts have been devoted to enhancing the long-context capabilities of Large Language Models (LLMs), particularly in long-context reasoning. To facilitate this research, we propose \textbf{DetectiveQA}, a dataset specifically designed for narrative reasoning within long contexts. We leverage detective novels, averaging over 100k tokens, to create a dataset containing 1200 human-annotated questions in both Chinese and English, each paired with corresponding reference reasoning steps. Furthermore, we introduce a step-wise reasoning metric, which enhances the evaluation of LLMs' reasoning processes. We validate our approach and evaluate the mainstream LLMs, including GPT-4, Claude, and LLaMA, revealing persistent long-context reasoning challenges and demonstrating their evidence-retrieval challenges. Our findings offer valuable insights into the study of long-context reasoning and lay the base for more rigorous evaluations.
In this letter, we investigate a coordinated multiple point (CoMP)-aided integrated sensing and communication (ISAC) system that supports multiple users and targets. Multiple base stations (BSs) employ a coordinated power allocation strategy to serve their associated single-antenna communication users (CUs) while utilizing the echo signals for joint radar target (RT) detection. The probability of detection (PoD) of the CoMP-ISAC system is then proposed for assessing the sensing performance. To maximize the sum rate while ensuring the PoD for each RT and adhering to the total transmit power budget across all BSs, we introduce an efficient power allocation strategy. Finally, simulation results are provided to validate the analytical findings, demonstrating that the proposed power allocation scheme effectively enhances the sum rate while satisfying the sensing requirements.
We present Wasserstein Adaptive Value Estimation for Actor-Critic (WAVE), an approach to enhance stability in deep reinforcement learning through adaptive Wasserstein regularization. Our method addresses the inherent instability of actor-critic algorithms by incorporating an adaptively weighted Wasserstein regularization term into the critic's loss function. We prove that WAVE achieves $\mathcal{O}\left(\frac{1}{k}\right)$ convergence rate for the critic's mean squared error and provide theoretical guarantees for stability through Wasserstein-based regularization. Using the Sinkhorn approximation for computational efficiency, our approach automatically adjusts the regularization based on the agent's performance. Theoretical analysis and experimental results demonstrate that WAVE achieves superior performance compared to standard actor-critic methods.
Pose estimation is a crucial problem in simultaneous localization and mapping (SLAM). However, developing a robust and consistent state estimator remains a significant challenge, as the traditional extended Kalman filter (EKF) struggles to handle the model nonlinearity, especially for inertial measurement unit (IMU) and light detection and ranging (LiDAR). To provide a consistent and efficient solution of pose estimation, we propose Eq-LIO, a robust state estimator for tightly coupled LIO systems based on an equivariant filter (EqF). Compared with the invariant Kalman filter based on the $\SE_2(3)$ group structure, the EqF uses the symmetry of the semi-direct product group to couple the system state including IMU bias, navigation state and LiDAR extrinsic calibration state, thereby suppressing linearization error and improving the behavior of the estimator in the event of unexpected state changes. The proposed Eq-LIO owns natural consistency and higher robustness, which is theoretically proven with mathematical derivation and experimentally verified through a series of tests on both public and private datasets.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.