亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Four new centrality measures for directed networks based on unitary, continuous-time quantum walks (CTQW) in $n$ dimensions -- where $n$ is the number of nodes -- are presented, tested and discussed. The main idea behind these methods consists in re-casting the classical HITS and PageRank algorithms as eigenvector problems for symmetric matrices, and using these symmetric matrices as Hamiltonians for CTQWs, in order to obtain a unitary evolution operator. The choice of the initial state is also crucial. Two options were tested: a vector with uniform occupation and a vector weighted w.r.t.~in- or out-degrees (for authority and hub centrality, respectively). Two methods are based on a HITS-derived Hamiltonian, and two use a PageRank-derived Hamiltonian. Centrality scores for the nodes are defined as the average occupation values. All the methods have been tested on a set of small, simple graphs in order to spot possible evident drawbacks, and then on a larger number of artificially generated larger-sized graphs, in order to draw a comparison with classical HITS and PageRank. Numerical results show that, despite some pathologies found in three of the methods when analyzing small graphs, all the methods are effective in finding the first and top ten nodes in larger graphs. We comment on the results and offer some insight into the good accordance between classical and quantum approaches.

相關內容

Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph. Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking. The current paper aims to address this gap. Formalizing strength of interactions through an established measure known as separation rank, we quantify the ability of certain GNNs to model interaction between a given subset of vertices and its complement, i.e. between sides of a given partition of input vertices. Our results reveal that the ability to model interaction is primarily determined by the partition's walk index -- a graph-theoretical characteristic that we define by the number of walks originating from the boundary of the partition. Experiments with common GNN architectures corroborate this finding. As a practical application of our theory, we design an edge sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a GNN to model interactions when input edges are removed. WIS is simple, computationally efficient, and markedly outperforms alternative methods in terms of induced prediction accuracy. More broadly, it showcases the potential of improving GNNs by theoretically analyzing the interactions they can model.

Graph neural networks (GNNs) have been increasingly deployed in various applications that involve learning on non-Euclidean data. However, recent studies show that GNNs are vulnerable to graph adversarial attacks. Although there are several defense methods to improve GNN robustness by eliminating adversarial components, they may also impair the underlying clean graph structure that contributes to GNN training. In addition, few of those defense models can scale to large graphs due to their high computational complexity and memory usage. In this paper, we propose GARNET, a scalable spectral method to boost the adversarial robustness of GNN models. GARNET first leverages weighted spectral embedding to construct a base graph, which is not only resistant to adversarial attacks but also contains critical (clean) graph structure for GNN training. Next, GARNET further refines the base graph by pruning additional uncritical edges based on probabilistic graphical model. GARNET has been evaluated on various datasets, including a large graph with millions of nodes. Our extensive experiment results show that GARNET achieves adversarial accuracy improvement and runtime speedup over state-of-the-art GNN (defense) models by up to 13.27% and 14.7x, respectively.

This paper proposes a novel signed $\beta$-model for directed signed network, which is frequently encountered in application domains but largely neglected in literature. The proposed signed $\beta$-model decomposes a directed signed network as the difference of two unsigned networks and embeds each node with two latent factors for in-status and out-status. The presence of negative edges leads to a non-concave log-likelihood, and a one-step estimation algorithm is developed to facilitate parameter estimation, which is efficient both theoretically and computationally. We also develop an inferential procedure for pairwise and multiple node comparisons under the signed $\beta$-model, which fills the void of lacking uncertainty quantification for node ranking. Theoretical results are established for the coverage probability of confidence interval, as well as the false discovery rate (FDR) control for multiple node comparison. The finite sample performance of the signed $\beta$-model is also examined through extensive numerical experiments on both synthetic and real-life networks.

We develop the theoretical foundations of a generalized Gromov-Hausdorff distance between functions on networks that has recently been applied to various subfields of topological data analysis and optimal transport. These functional representations of networks, or networks for short, specialize in the finite setting to (possibly asymmetric) adjacency matrices and derived representations such as distance or kernel matrices. Existing literature utilizing these constructions cannot, however, benefit from continuous formulations because the continuum limits of finite networks under this distance are not well-understood. For example, while there are currently numerous persistent homology methods on finite networks, it is unclear if these methods produce well-defined persistence diagrams in the infinite setting. We resolve this situation by introducing the collection of compact networks that arises by taking continuum limits of finite networks and developing sampling results showing that this collection admits well-defined persistence diagrams. Compared to metric spaces, the isomorphism class of the generalized Gromov-Hausdorff distance over networks is rather complex, and contains representatives having different cardinalities and different topologies. We provide an exact characterization of a suitable notion of isomorphism for compact networks as well as alternative, stronger characterizations under additional topological regularity assumptions. Toward data applications, we describe a unified framework for developing quantitatively stable network invariants, provide basic examples, and cast existing results on the stability of persistent homology methods in this extended framework. To illustrate our theoretical results, we introduce a model of directed circles with finite reversibility and characterize their Dowker persistence diagrams.

Recent results suggest that quantum computers possess the potential to speed up nonconvex optimization problems. However, a crucial factor for the implementation of quantum optimization algorithms is their robustness against experimental and statistical noises. In this paper, we systematically study quantum algorithms for finding an $\epsilon$-approximate second-order stationary point ($\epsilon$-SOSP) of a $d$-dimensional nonconvex function, a fundamental problem in nonconvex optimization, with noisy zeroth- or first-order oracles as inputs. We first prove that, up to noise of $O(\epsilon^{10}/d^5)$, accelerated perturbed gradient descent with quantum gradient estimation takes $O(\log d/\epsilon^{1.75})$ quantum queries to find an $\epsilon$-SOSP. We then prove that perturbed gradient descent is robust to the noise of $O(\epsilon^6/d^4)$ and $O(\epsilon/d^{0.5+\zeta})$ for $\zeta>0$ on the zeroth- and first-order oracles, respectively, which provides a quantum algorithm with poly-logarithmic query complexity. We then propose a stochastic gradient descent algorithm using quantum mean estimation on the Gaussian smoothing of noisy oracles, which is robust to $O(\epsilon^{1.5}/d)$ and $O(\epsilon/\sqrt{d})$ noise on the zeroth- and first-order oracles, respectively. The quantum algorithm takes $O(d^{2.5}/\epsilon^{3.5})$ and $O(d^2/\epsilon^3)$ queries to the two oracles, giving a polynomial speedup over the classical counterparts. Moreover, we characterize the domains where quantum algorithms can find an $\epsilon$-SOSP with poly-logarithmic, polynomial, or exponential number of queries in $d$, or the problem is information-theoretically unsolvable even by an infinite number of queries. In addition, we prove an $\Omega(\epsilon^{-12/7})$ lower bound in $\epsilon$ for any randomized classical and quantum algorithm to find an $\epsilon$-SOSP using either noisy zeroth- or first-order oracles.

How does one generalize differential geometric constructs such as curvature of a manifold to the discrete world of graphs and other combinatorial structures? This problem carries significant importance for analyzing models of discrete spacetime in quantum gravity; inferring network geometry in network science; and manifold learning in data science. The key contribution of this paper is to introduce and validate a new estimator of discrete sectional curvature for random graphs with low metric-distortion. The latter are constructed via a specific graph sprinkling method on different manifolds with constant sectional curvature. We define a notion of metric distortion, which quantifies how well the graph metric approximates the metric of the underlying manifold. We show how graph sprinkling algorithms can be refined to produce hard annulus random geometric graphs with minimal metric distortion. We construct random geometric graphs for spheres, hyperbolic and euclidean planes; upon which we validate our curvature estimator. Numerical analysis reveals that the error of the estimated curvature diminishes as the mean metric distortion goes to zero, thus demonstrating convergence of the estimate. We also perform comparisons to other existing discrete curvature measures. Finally, we demonstrate two practical applications: (i) estimation of the earth's radius using geographical data; and (ii) sectional curvature distributions of self-similar fractals.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.

北京阿比特科技有限公司