亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A local discontinuous Galerkin (LDG) method for approximating large deformations of prestrained plates is introduced and tested on several insightful numerical examples in our previous computational work. This paper presents a numerical analysis of this LDG method, focusing on the free boundary case. The problem consists of minimizing a fourth order bending energy subject to a nonlinear and nonconvex metric constraint. The energy is discretized using LDG and a discrete gradient flow is used for computing discrete minimizers. We first show $\Gamma$-convergence of the discrete energy to the continuous one. Then we prove that the discrete gradient flow decreases the energy at each step and computes discrete minimizers with control of the metric constraint defect. We also present a numerical scheme for initialization of the gradient flow, and discuss the conditional stability of it.

相關內容

We present the construction and application of a first order stabilization-free virtual element method to problems in plane elasticity. Well-posedness and error estimates of the discrete problem are established. The method is assessed on a series of well-known benchmark problems from linear elasticity and numerical results are presented that affirm the optimal convergence rate of the virtual element method in the $L^2$ norm and the energy seminorm.

Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107]. The convergence results currently found in literature only consider H^1-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and Suli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. Suli, Numerical analysis of a topology optimization problem for Stokes flow, arXiv preprint arXiv:2102.10408, (2021)]. We show that, given an isolated minimizer of the infinite-dimensional problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.

We consider the Cauchy problem for a second-order nonlinear evolution equation in a Hilbert space. This equation represents the abstract generalization of the Ball integro-differential equation. The general nonlinear case with respect to terms of the equation which include a square of a norm of a gradient is considered. A three-layer semi-discrete scheme is proposed in order to find an approximate solution. In this scheme, the approximation of nonlinear terms that are dependent on the gradient is carried out by using an integral mean. We show that the solution of the nonlinear discrete problem and its corresponding difference analogue of a first-order derivative is uniformly bounded. For the solution of the corresponding linear discrete problem, it is obtained high-order a priori estimates by using two-variable Chebyshev polynomials. Based on these estimates we prove the stability of the nonlinear discrete problem. For smooth solutions, we provide error estimates for the approximate solution. An iteration method is applied in order to find an approximate solution for each temporal step. The convergence of the iteration process is proved.

In this study, we consider the nonlinear Sch\"odinger equation (NLS) with the zero-boundary condition on a two- or three-dimensional large finite cubic lattice. We prove that its solution converges to that of the NLS on the entire Euclidean space with simultaneous reduction in the lattice distance and expansion of the domain. Moreover, we obtain a precise global-in-time bound for the rate of convergence. Our proof heavily relies on Strichartz estimates on a finite lattice. A key observation is that, compared to the case of a lattice with a fixed size [Y. Hong, C. Kwak, S. Nakamura, and C. Yang, \emph{Finite difference scheme for two-dimensional periodic nonlinear {S}chr\"{o}dinger equations}, Journal of Evolution Equations \textbf{21} (2021), no.~1, 391--418.], the loss of regularity in Strichartz estimates can be reduced as the domain expands, depending on the speed of expansion. This allows us to address the physically important three-dimensional case.

The scope of this paper is the analysis and approximation of an optimal control problem related to the Allen-Cahn equation. A tracking functional is minimized subject to the Allen-Cahn equation using distributed controls that satisfy point-wise control constraints. First and second order necessary and sufficient conditions are proved. The lowest order discontinuous Galerkin - in time - scheme is considered for the approximation of the control to state and adjoint state mappings. Under a suitable restriction on maximum size of the temporal and spatial discretization parameters $k$, $h$ respectively in terms of the parameter $\epsilon$ that describes the thickness of the interface layer, a-priori estimates are proved with constants depending polynomially upon $1/ \epsilon$. Unlike to previous works for the uncontrolled Allen-Cahn problem our approach does not rely on a construction of an approximation of the spectral estimate, and as a consequence our estimates are valid under low regularity assumptions imposed by the optimal control setting. These estimates are also valid in cases where the solution and its discrete approximation do not satisfy uniform space-time bounds independent of $\epsilon$. These estimates and a suitable localization technique, via the second order condition (see \cite{Arada-Casas-Troltzsch_2002,Casas-Mateos-Troltzsch_2005,Casas-Raymond_2006,Casas-Mateos-Raymond_2007}), allows to prove error estimates for the difference between local optimal controls and their discrete approximation as well as between the associated state and adjoint state variables and their discrete approximations

The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the statistical finite element method demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the Wasserstein-2 distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which test the robustness of StatFEM when extended to nonlinear quantities of interest.

In this paper we consider a class of unfitted finite element methods for scalar elliptic problems. These so-called CutFEM methods use standard finite element spaces on a fixed unfitted triangulation combined with the Nitsche technique and a ghost penalty stabilization. As a model problem we consider the application of such a method to the Poisson interface problem. We introduce and analyze a new class of preconditioners that is based on a subspace decomposition approach. The unfitted finite element space is split into two subspaces, where one subspace is the standard finite element space associated to the background mesh and the second subspace is spanned by all cut basis functions corresponding to nodes on the cut elements. We will show that this splitting is stable, uniformly in the discretization parameter and in the location of the interface in the triangulation. Based on this we introduce an efficient preconditioner that is uniformly spectrally equivalent to the stiffness matrix. Using a similar splitting, it is shown that the same preconditioning approach can also be applied to a fictitious domain CutFEM discretization of the Poisson equation. Results of numerical experiments are included that illustrate optimality of such preconditioners for the Poisson interface problem and the Poisson fictitious domain problem.

This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.

The idea of using polynomial methods to improve simple smoother iterations within a multigrid method for a symmetric positive definite (SPD) system is revisited. When the single-step smoother itself corresponds to an SPD operator, there is in particular a very simple iteration, a close cousin of the Chebyshev semi-iterative method, based on the Chebyshev polynomials of the fourth instead of first kind, that optimizes a two-level bound going back to Hackbusch. A full V-cycle bound for general polynomial smoothers is derived using the V-cycle theory of McCormick. The fourth-kind Chebyshev iteration is quasi-optimal for the V-cycle bound. The optimal polynomials for the V-cycle bound can be found numerically, achieving an about 18% lower error contraction factor bound than the fourth-kind Chebyshev iteration, asymptotically as the number of smoothing steps goes to infinity. Implementation of the optimized iteration is discussed, and the performance of the polynomial smoothers are illustrated with a simple numerical example.

T. Borrvall and J. Petersson [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107] developed the first model for topology optimization of fluids in Stokes flow. They proved the existence of minimizers in the infinite-dimensional setting and showed that a suitably chosen finite element method will converge in a weak(-*) sense to an unspecified solution. In this work, we prove novel regularity results and extend their numerical analysis. In particular, given an isolated local minimizer to the infinite-dimensional problem, we show that there exists a sequence of finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to it. We also provide the first numerical investigation into convergence rates.

北京阿比特科技有限公司