To address the challenges posed by the heterogeneity inherent in federated learning (FL) and to attract high-quality clients, various incentive mechanisms have been employed. However, existing incentive mechanisms are typically utilized in conventional synchronous aggregation, resulting in significant straggler issues. In this study, we propose a novel asynchronous FL framework that integrates an incentive mechanism based on contract theory. Within the incentive mechanism, we strive to maximize the utility of the task publisher by adaptively adjusting clients' local model training epochs, taking into account factors such as time delay and test accuracy. In the asynchronous scheme, considering client quality, we devise aggregation weights and an access control algorithm to facilitate asynchronous aggregation. Through experiments conducted on the MNIST dataset, the simulation results demonstrate that the test accuracy achieved by our framework is 3.12% and 5.84% higher than that achieved by FedAvg and FedProx without any attacks, respectively. The framework exhibits a 1.35% accuracy improvement over the ideal Local SGD under attacks. Furthermore, aiming for the same target accuracy, our framework demands notably less computation time than both FedAvg and FedProx.
Active reconfigurable intelligent surface (ARIS) is a promising way to compensate for multiplicative fading attenuation by amplifying and reflecting event signals to selected users. This paper investigates the performance of ARIS assisted non-orthogonal multiple access (NOMA) networks over cascaded Nakagami-m fading channels. The effects of hardware impairments (HIS) and reflection coefficients on ARIS-NOMA networks with imperfect successive interference cancellation (ipSIC) and perfect successive interference cancellation (pSIC) are considered. More specifically, we develop new precise and asymptotic expressions of outage probability and ergodic data rate with ipSIC/pSIC for ARIS-NOMA-HIS networks. According to the approximated analyses, the diversity orders and multiplexing gains for couple of non-orthogonal users are attained in detail. Additionally, the energy efficiency of ARIS-NOMA-HIS networks is surveyed in delay-limited and delay-tolerant transmission schemes. The simulation findings are presented to demonstrate that: i) The outage behaviors and ergodic data rates of ARIS-NOMA-HIS networks precede that of ARIS aided orthogonal multiple access (OMA) and passive reconfigurable intelligent surface (PRIS) aided OMA; ii) As the reflection coefficient of ARIS increases, ARIS-NOMA-HIS networks have the ability to provide the strengthened outage performance; and iii) ARIS-NOMA-HIS networks are more energy efficient than ARIS/PRIS-OMA networks and conventional cooperative schemes.
To address the challenge of identifying and understanding hidden dangers in substations from unstructured text data, a novel dynamic analysis method is proposed. This approach begins by analyzing and extracting data from the unstructured text related to hidden dangers. It then leverages a flexible, distributed data search engine built on Elastic-Search to handle this information. Following this, the hidden Markov model is employed to train the data within the engine. The Viterbi algorithm is integrated to decipher the hidden state sequences, facilitating the segmentation and labeling of entities related to hidden dangers. The final step involves using the Neo4j graph database to dynamically create a knowledge map that visualizes hidden dangers in the substation. This method's effectiveness is demonstrated through an example analysis using data from a specific substation's hidden dangers.
Deep Neural Networks (DNNs) demonstrated remarkable capabilities in learning complex hierarchical data representations, but the nature of these representations remains largely unknown. Existing global explainability methods, such as Network Dissection, face limitations such as reliance on segmentation masks, lack of statistical significance testing, and high computational demands. We propose Inverse Recognition (INVERT), a scalable approach for connecting learned representations with human-understandable concepts by leveraging their capacity to discriminate between these concepts. In contrast to prior work, INVERT is capable of handling diverse types of neurons, exhibits less computational complexity, and does not rely on the availability of segmentation masks. Moreover, INVERT provides an interpretable metric assessing the alignment between the representation and its corresponding explanation and delivering a measure of statistical significance, emphasizing its utility and credibility. We demonstrate the applicability of INVERT in various scenarios, including the identification of representations affected by spurious correlations, and the interpretation of the hierarchical structure of decision-making within the models.
The remarkable advancements in large language models (LLMs) have significantly enhanced the performance in few-shot learning settings. By using only a small number of labeled examples, referred to as demonstrations, LLMs can effectively grasp the task at hand through in-context learning. However, the process of selecting appropriate demonstrations has received limited attention in prior work. This paper addresses the issue of identifying the most informative demonstrations for few-shot learning by approaching it as a pool-based Active Learning (AL) problem over a single iteration. Our objective is to investigate how AL algorithms can serve as effective demonstration selection methods for in-context learning. We compare various standard AL algorithms based on uncertainty, diversity, and similarity, and consistently observe that the latter outperforms all other methods, including random sampling. Notably, uncertainty sampling, despite its success in conventional supervised learning scenarios, performs poorly in this context. Our extensive experimentation involving a diverse range of GPT and OPT models across $24$ classification and multi-choice tasks, coupled with thorough analysis, unambiguously demonstrates that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
The prevalent deployment of learning from human preferences through reinforcement learning (RLHF) relies on two important approximations: the first assumes that pairwise preferences can be substituted with pointwise rewards. The second assumes that a reward model trained on these pointwise rewards can generalize from collected data to out-of-distribution data sampled by the policy. Recently, Direct Preference Optimisation (DPO) has been proposed as an approach that bypasses the second approximation and learn directly a policy from collected data without the reward modelling stage. However, this method still heavily relies on the first approximation. In this paper we try to gain a deeper theoretical understanding of these practical algorithms. In particular we derive a new general objective called $\Psi$PO for learning from human preferences that is expressed in terms of pairwise preferences and therefore bypasses both approximations. This new general objective allows us to perform an in-depth analysis of the behavior of RLHF and DPO (as special cases of $\Psi$PO) and to identify their potential pitfalls. We then consider another special case for $\Psi$PO by setting $\Psi$ simply to Identity, for which we can derive an efficient optimisation procedure, prove performance guarantees and demonstrate its empirical superiority to DPO on some illustrative examples.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.