We present an Open-Vocabulary 3D Scene Graph (OVSG), a formal framework for grounding a variety of entities, such as object instances, agents, and regions, with free-form text-based queries. Unlike conventional semantic-based object localization approaches, our system facilitates context-aware entity localization, allowing for queries such as ``pick up a cup on a kitchen table" or ``navigate to a sofa on which someone is sitting". In contrast to existing research on 3D scene graphs, OVSG supports free-form text input and open-vocabulary querying. Through a series of comparative experiments using the ScanNet dataset and a self-collected dataset, we demonstrate that our proposed approach significantly surpasses the performance of previous semantic-based localization techniques. Moreover, we highlight the practical application of OVSG in real-world robot navigation and manipulation experiments.
This paper presents a Bayesian framework for inferring the posterior of the extended state of a target, incorporating its underlying goal or intent, such as any intermediate waypoints and/or final destination. The methodology is thus for joint tracking and intent recognition. Several novel latent intent models are proposed here within a virtual leader formulation. They capture the influence of the target's hidden goal on its instantaneous behaviour. In this context, various motion models, including for highly maneuvering objects, are also considered. The a priori unknown target intent (e.g. destination) can dynamically change over time and take any value within the state space (e.g. a location or spatial region). A sequential Monte Carlo (particle filtering) approach is introduced for the simultaneous estimation of the target's (kinematic) state and its intent. Rao-Blackwellisation is employed to enhance the statistical performance of the inference routine. Simulated data and real radar measurements are used to demonstrate the efficacy of the proposed techniques.
Large pre-trained sequence models, such as transformer-based architectures, have been recently shown to have the capacity to carry out in-context learning (ICL). In ICL, a decision on a new input is made via a direct mapping of the input and of a few examples from the given task, serving as the task's context, to the output variable. No explicit updates of model parameters are needed to tailor the decision to a new task. Pre-training, which amounts to a form of meta-learning, is based on the observation of examples from several related tasks. Prior work has shown ICL capabilities for linear regression. In this study, we leverage ICL to address the inverse problem of multiple-input and multiple-output (MIMO) equalization based on a context given by pilot symbols. A task is defined by the unknown fading channel and by the signal-to-noise ratio (SNR) level, which may be known. To highlight the practical potential of the approach, we allow for the presence of quantization of the received signals. We demonstrate via numerical results that transformer-based ICL has a threshold behavior, whereby, as the number of pre-training tasks grows, the performance switches from that of a minimum mean squared error (MMSE) equalizer with a prior determined by the pre-trained tasks to that of an MMSE equalizer with the true data-generating prior.
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks. However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome. For example, a teacher might try to understand their student's current comprehension level to tailor their instruction accordingly, and a travel agent might ask questions of their customer to understand their preferences in order to recommend activities they might enjoy. LLMs trained with supervised fine-tuning or "single-step" RL, as with standard RLHF, might struggle which tasks that require such goal-directed behavior, since they are not trained to optimize for overall conversational outcomes after multiple turns of interaction. In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue. Our key insight is that, though LLMs might not effectively solve goal-directed dialogue tasks out of the box, they can provide useful data for solving such tasks by simulating suboptimal but human-like behaviors. Given a textual description of a goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts of hypothetical in-domain human-human interactions. Our algorithm then utilizes this dataset with offline reinforcement learning to train an interactive conversational agent that can optimize goal-directed objectives over multiple turns. In effect, the LLM produces examples of possible interactions, and RL then processes these examples to learn to perform more optimal interactions. Empirically, we show that our proposed approach achieves state-of-the-art performance in various goal-directed dialogue tasks that include teaching and preference elicitation.
Human Pose (HP) estimation is actively researched because of its wide range of applications. However, even estimators pre-trained on large datasets may not perform satisfactorily due to a domain gap between the training and test data. To address this issue, we present our approach combining Active Learning (AL) and Transfer Learning (TL) to adapt HP estimators to individual video domains efficiently. For efficient learning, our approach quantifies (i) the estimation uncertainty based on the temporal changes in the estimated heatmaps and (ii) the unnaturalness in the estimated full-body HPs. These quantified criteria are then effectively combined with the state-of-the-art representativeness criterion to select uncertain and diverse samples for efficient HP estimator learning. Furthermore, we reconsider the existing Active Transfer Learning (ATL) method to introduce novel ideas related to the retraining methods and Stopping Criteria (SC). Experimental results demonstrate that our method enhances learning efficiency and outperforms comparative methods. Our code is publicly available at: //github.com/ImIntheMiddle/VATL4Pose-WACV2024
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.
We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.
Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.