Maintainers are now self-sabotaging their work in order to take political or economic stances, a practice referred to as "protestware". In this poster, we present our approach to understand how the discourse about such an attack went viral, how it is received by the community, and whether developers respond to the attack in a timely manner. We study two notable protestware cases, i.e., Colors.js and es5-ext, comparing with discussions of a typical security vulnerability as a baseline, i.e., Ua-parser, and perform a thematic analysis of more than two thousand protest-related posts to extract the different narratives when discussing protestware.
Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at //github. com/sail-sg/lm-random-memory-access.
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our information and knowledge practices.
The anthropocentric cultural idea that humans are active agents exerting control over their environments has been largely normalized and inscribed in practices, policies, and products of contemporary industrialized societies. This view underlies a human-ecology relationship based on resource and knowledge extraction. To create a more sustainable and equitable future, it is essential to consider alternative cultural ideas rooted in ecological thinking. This perspective underscores the interconnectedness between humans and more-than-human worlds. We propose a path to reshape the human-ecology relationship by advocating for alternative human-AI interactions. In this paper, we undertake a critical comparison between anthropocentrism and ecological thinking, using storytelling to illustrate various human-AI interactions that embody ecological thinking. We also delineate a set of design principles aimed at guiding AI developments toward fostering a more caring human-ecology relationship.
While many have shown how Large Language Models (LLMs) can be applied to a diverse set of tasks, the critical issues of data contamination and memorization are often glossed over. In this work, we address this concern for tabular data. Starting with simple qualitative tests for whether an LLM knows the names and values of features, we introduce a variety of different techniques to assess the degrees of contamination, including statistical tests for conditional distribution modeling and four tests that identify memorization. Our investigation reveals that LLMs are pre-trained on many popular tabular datasets. This exposure can lead to invalid performance evaluation on downstream tasks because the LLMs have, in effect, been fit to the test set. Interestingly, we also identify a regime where the language model reproduces important statistics of the data, but fails to reproduce the dataset verbatim. On these datasets, although seen during training, good performance on downstream tasks might not be due to overfitting. Our findings underscore the need for ensuring data integrity in machine learning tasks with LLMs. To facilitate future research, we release an open-source tool that can perform various tests for memorization \url{//github.com/interpretml/LLM-Tabular-Memorization-Checker}.
This article investigates the complex nexus of capitalism, racial oppression, and artificial intelligence (AI), revealing how these elements coalesce to deepen social inequities. By tracing the historical exploitation of marginalized communities through capitalist practices, the study demonstrates how AI technologies not only reflect but also amplify societal biases, particularly in exacerbating racial disparities. Through a focused analysis, the paper presents how AI's development and application exploit marginalized groups via mechanisms such as gig economy labor abuses, biased facial recognition technologies, and the disproportionate mental health burdens placed on these communities. These examples underscore the critical role of AI in reinforcing and intensifying existing inequalities. Concluding that unregulated AI significantly threatens to compound current oppressions, the article calls for a concerted effort towards responsible AI development. This entails adopting a holistic approach that rectifies systemic flaws and champions the empowerment of marginalized individuals, ensuring that technological advancement contributes to societal healing rather than perpetuating cycles of exploitation.
Measuring average differences in an outcome across racial or ethnic groups is a crucial first step for equity assessments, but researchers often lack access to data on individuals' races and ethnicities to calculate them. A common solution is to impute the missing race or ethnicity labels using proxies, then use those imputations to estimate the disparity. Conventional standard errors mischaracterize the resulting estimate's uncertainty because they treat the imputation model as given and fixed, instead of as an unknown object that must be estimated with uncertainty. We propose a dual-bootstrap approach that explicitly accounts for measurement uncertainty and thus enables more accurate statistical inference, which we demonstrate via simulation. In addition, we adapt our approach to the commonly used Bayesian Improved Surname Geocoding (BISG) imputation algorithm, where direct bootstrapping is infeasible because the underlying Census Bureau data are unavailable. In simulations, we find that measurement uncertainty is generally insignificant for BISG except in particular circumstances; bias, not variance, is likely the predominant source of error. We apply our method to quantify the uncertainty of prevalence estimates of common health conditions by race using data from the American Family Cohort.
We study a setting in which a community wishes to identify a strongly supported proposal from a space of alternatives, in order to change the status quo. We describe a deliberation process in which agents dynamically form coalitions around proposals that they prefer over the status quo. We formulate conditions on the space of proposals and on the ways in which coalitions are formed that guarantee deliberation to succeed, that is, to terminate by identifying a proposal with the largest possible support. Our results provide theoretical foundations for the analysis of deliberative processes such as the ones that take place in online systems for democratic deliberation support.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.